Mecoda-Orange


NameMecoda-Orange JSON
Version 2.3.2 PyPI version JSON
download
home_pagehttps://github.com/eosc-cos4cloud/mecoda-orange
SummaryOrange Data Minining Add-on containing MECODA widgets to analyse data from citizen science observatories
upload_time2023-11-02 16:53:28
maintainer
docs_urlNone
authorAna Alvarez, ICM-CSIC
requires_python
licenseBSD
keywords orange3 add-on orange data mining
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Mecoda-Orange
Mecoda-Orange is an add-on developed on [Orange Data Mining Platform](https://orangedatamining.com/) to analyse data from science citizen observatories. 

See [documentation](https://github.com/eosc-cos4cloud/mecoda-orange).

[MECODA (ModulE for Citizen Observatory Data Analysis)](https://cos4cloud-eosc.eu/services/mecoda-data-analysis-package/) is a repository to facilitate analyzing and viewing all sorts of citizen science data. It allows users to make their own exploratory visual data analysis without the help of specialized analysts. It also enables observers to create their own reproducible visual dataflows and share and reuse them. 	

MECODA is part of [Cos4Cloud](https://cos4cloud-eosc.eu/), a European Horizon 2020 project to boost citizen science technologies.

# Features

* **Minka**: collect observations from Minka API using [mecoda-minka](https://github.com/eosc-cos4cloud/mecoda-minka) library. In addition, there are complementary widgets for various tasks with Minka observations, including retrieving observation images, filtering observations by marine or terrestrial categories, and searching observations by taxon tree.
* **OdourCollect**: collect observations from OdourCollect API using [pyodcollect](https://pypi.org/project/pyodcollect/) library.
* **canAIRio**: composed for two widgets, one for [CanAIRio Fixed Stations data](https://canair.io/docs/fixed_stations_api_en.html) and other for [CanAIRio Mobile Stations data](https://canair.io/docs/mobile_api_en.html).
* **Natusfera**: collect observations from Natusfera API, using [mecoda-nat](https://github.com/eosc-cos4cloud/mecoda-nat) library.
* **Smart Citizen**: collect observations from the SmartCitizen API, using two widgets, one for collecting information about the kits in the [smartcitizen platform](https://smartcitizen.me/kits) and another one for the actual timeseries data. For making use of the timeseries data, it is necessary to add the orange `timeseries` add-on.
* **AireCiudadano**: collect observations about air quality using DIY sensors, inside [this project](https://aireciudadano.com/).
* **Plantnet**: identify images of plants using [Plantnet API](https://identify.plantnet.org/es). 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/eosc-cos4cloud/mecoda-orange",
    "name": "Mecoda-Orange",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "orange3 add-on,orange,data mining",
    "author": "Ana Alvarez, ICM-CSIC",
    "author_email": "ana.alvarez@icm.csic.es",
    "download_url": "",
    "platform": null,
    "description": "# Mecoda-Orange\nMecoda-Orange is an add-on developed on [Orange Data Mining Platform](https://orangedatamining.com/) to analyse data from science citizen observatories. \n\nSee [documentation](https://github.com/eosc-cos4cloud/mecoda-orange).\n\n[MECODA (ModulE for Citizen Observatory Data Analysis)](https://cos4cloud-eosc.eu/services/mecoda-data-analysis-package/) is a repository to facilitate analyzing and viewing all sorts of citizen science data. It allows users to make their own exploratory visual data analysis without the help of specialized analysts. It also enables observers to create their own reproducible visual dataflows and share and reuse them. \t\n\nMECODA is part of [Cos4Cloud](https://cos4cloud-eosc.eu/), a European Horizon 2020 project to boost citizen science technologies.\n\n# Features\n\n* **Minka**: collect observations from Minka API using [mecoda-minka](https://github.com/eosc-cos4cloud/mecoda-minka) library. In addition, there are complementary widgets for various tasks with Minka observations, including retrieving observation images, filtering observations by marine or terrestrial categories, and searching observations by taxon tree.\n* **OdourCollect**: collect observations from OdourCollect API using [pyodcollect](https://pypi.org/project/pyodcollect/) library.\n* **canAIRio**: composed for two widgets, one for [CanAIRio Fixed Stations data](https://canair.io/docs/fixed_stations_api_en.html) and other for [CanAIRio Mobile Stations data](https://canair.io/docs/mobile_api_en.html).\n* **Natusfera**: collect observations from Natusfera API, using [mecoda-nat](https://github.com/eosc-cos4cloud/mecoda-nat) library.\n* **Smart Citizen**: collect observations from the SmartCitizen API, using two widgets, one for collecting information about the kits in the [smartcitizen platform](https://smartcitizen.me/kits) and another one for the actual timeseries data. For making use of the timeseries data, it is necessary to add the orange `timeseries` add-on.\n* **AireCiudadano**: collect observations about air quality using DIY sensors, inside [this project](https://aireciudadano.com/).\n* **Plantnet**: identify images of plants using [Plantnet API](https://identify.plantnet.org/es). \n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "Orange Data Minining Add-on containing MECODA widgets to analyse data from citizen science observatories",
    "version": "2.3.2",
    "project_urls": {
        "Homepage": "https://github.com/eosc-cos4cloud/mecoda-orange"
    },
    "split_keywords": [
        "orange3 add-on",
        "orange",
        "data mining"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52055b68b3e6aab3539d2c6b7a521f4c24b2dab2cdc07e50a1634e481b021b4d",
                "md5": "04d9a22d50c65a5d8148cc60948c7a63",
                "sha256": "760fdc25b5a2b2a47badf693b8fab0d80df0fc6c81486bb742563e3ac077ce56"
            },
            "downloads": -1,
            "filename": "Mecoda_Orange-2.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "04d9a22d50c65a5d8148cc60948c7a63",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2498913,
            "upload_time": "2023-11-02T16:53:28",
            "upload_time_iso_8601": "2023-11-02T16:53:28.797815Z",
            "url": "https://files.pythonhosted.org/packages/52/05/5b68b3e6aab3539d2c6b7a521f4c24b2dab2cdc07e50a1634e481b021b4d/Mecoda_Orange-2.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-02 16:53:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "eosc-cos4cloud",
    "github_project": "mecoda-orange",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "mecoda-orange"
}
        
Elapsed time: 0.15525s