mediallm-mcp


Namemediallm-mcp JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryMCP Server for MediaLLM
upload_time2025-08-31 17:54:07
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords agent ai anthropic claude ffmpeg llm mcp media-processing model-context-protocol natural-language ollama server tools video
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MediaLLM MCP Server

MCP server that provides AI-powered media processing capabilities for FFmpeg operations through natural language commands.
MediaLLM converts natural language requests into precise FFmpeg commands and scans workspaces for media files.

**[Full Documentation](https://mediallm.arunbrahma.com/)**

## Installation

```bash
# Using pip
pip install mediallm-mcp

# Using uv (recommended)
uv add mediallm-mcp
```

## Usage

```bash
# STDIO (default)
mediallm-mcp

# Streamable HTTP
mediallm-mcp --http --port 3001

# SSE
mediallm-mcp --sse --port 3001
```

## Running in Docker

```bash
# Build image
cd packages/mediallm-mcp
docker build -t mediallm-mcp .

# Run with media directory mounted
docker run -it --rm \
  -v /path/to/media:/workspace \
  mediallm-mcp
```

## Accessing from Claude Desktop

Add to `claude_desktop_config.json`:

```json
{
  "mcpServers": {
    "mediallm-mcp": {
      "command": "uvx",
      "args": ["mediallm-mcp"],
      "env": {}
    }
  }
}
```

**Config file location:**
- **macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json`
- **Windows:** `%APPDATA%\Claude\claude_desktop_config.json`

## Accessing from Claude Code

Add to `.mcp.json` in project root:

```json
{
  "mcpServers": {
    "mediallm-mcp": {
      "command": "uvx",
      "args": ["mediallm-mcp"],
      "env": {}
    }
  }
}
```

## Accessing from Cursor

[![Add to Cursor](https://cursor.com/deeplink/mcp-install-dark.svg)](https://cursor.com/en/install-mcp?name=mediallm-mcp&config=eyJjb21tYW5kIjogInV2eCIsICJhcmdzIjogWyJtZWRpYWxsbS1tY3AiXX0%3D)

Or manually add to `.cursor/mcp.json`:

```json
{
  "mcpServers": {
    "mediallm-mcp": {
      "command": "uvx",
      "args": ["mediallm-mcp"],
      "env": {}
    }
  }
}
```

## Environment Variables (Optional) for MCP configuration

- `MEDIALLM_WORKSPACE` - Specify media directory (default: current working directory)
- `MEDIALLM_MODEL` - Override LLM model (default: llama3.1:latest)
- `MEDIALLM_OLLAMA_HOST` - Ollama server URL (default: http://localhost:11434)
- `MEDIALLM_OUTPUT_DIR` - Output directory (default: current working directory)

## Debugging

Use MCP inspector to test the connection:

```bash
npx @modelcontextprotocol/inspector mediallm-mcp
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mediallm-mcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Arun Brahma <mithubrahma94@gmail.com>",
    "keywords": "agent, ai, anthropic, claude, ffmpeg, llm, mcp, media-processing, model-context-protocol, natural-language, ollama, server, tools, video",
    "author": null,
    "author_email": "Arun Brahma <mithubrahma94@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/87/76/4af57f7015bc2ba07c9a96307fa4a2b4023aaeba0ed5c898c58815f1b78a/mediallm_mcp-0.0.2.tar.gz",
    "platform": null,
    "description": "# MediaLLM MCP Server\n\nMCP server that provides AI-powered media processing capabilities for FFmpeg operations through natural language commands.\nMediaLLM converts natural language requests into precise FFmpeg commands and scans workspaces for media files.\n\n**[Full Documentation](https://mediallm.arunbrahma.com/)**\n\n## Installation\n\n```bash\n# Using pip\npip install mediallm-mcp\n\n# Using uv (recommended)\nuv add mediallm-mcp\n```\n\n## Usage\n\n```bash\n# STDIO (default)\nmediallm-mcp\n\n# Streamable HTTP\nmediallm-mcp --http --port 3001\n\n# SSE\nmediallm-mcp --sse --port 3001\n```\n\n## Running in Docker\n\n```bash\n# Build image\ncd packages/mediallm-mcp\ndocker build -t mediallm-mcp .\n\n# Run with media directory mounted\ndocker run -it --rm \\\n  -v /path/to/media:/workspace \\\n  mediallm-mcp\n```\n\n## Accessing from Claude Desktop\n\nAdd to `claude_desktop_config.json`:\n\n```json\n{\n  \"mcpServers\": {\n    \"mediallm-mcp\": {\n      \"command\": \"uvx\",\n      \"args\": [\"mediallm-mcp\"],\n      \"env\": {}\n    }\n  }\n}\n```\n\n**Config file location:**\n- **macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json`\n- **Windows:** `%APPDATA%\\Claude\\claude_desktop_config.json`\n\n## Accessing from Claude Code\n\nAdd to `.mcp.json` in project root:\n\n```json\n{\n  \"mcpServers\": {\n    \"mediallm-mcp\": {\n      \"command\": \"uvx\",\n      \"args\": [\"mediallm-mcp\"],\n      \"env\": {}\n    }\n  }\n}\n```\n\n## Accessing from Cursor\n\n[![Add to Cursor](https://cursor.com/deeplink/mcp-install-dark.svg)](https://cursor.com/en/install-mcp?name=mediallm-mcp&config=eyJjb21tYW5kIjogInV2eCIsICJhcmdzIjogWyJtZWRpYWxsbS1tY3AiXX0%3D)\n\nOr manually add to `.cursor/mcp.json`:\n\n```json\n{\n  \"mcpServers\": {\n    \"mediallm-mcp\": {\n      \"command\": \"uvx\",\n      \"args\": [\"mediallm-mcp\"],\n      \"env\": {}\n    }\n  }\n}\n```\n\n## Environment Variables (Optional) for MCP configuration\n\n- `MEDIALLM_WORKSPACE` - Specify media directory (default: current working directory)\n- `MEDIALLM_MODEL` - Override LLM model (default: llama3.1:latest)\n- `MEDIALLM_OLLAMA_HOST` - Ollama server URL (default: http://localhost:11434)\n- `MEDIALLM_OUTPUT_DIR` - Output directory (default: current working directory)\n\n## Debugging\n\nUse MCP inspector to test the connection:\n\n```bash\nnpx @modelcontextprotocol/inspector mediallm-mcp\n```",
    "bugtrack_url": null,
    "license": null,
    "summary": "MCP Server for MediaLLM",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/iamarunbrahma/mediallm",
        "Repository": "https://github.com/iamarunbrahma/mediallm"
    },
    "split_keywords": [
        "agent",
        " ai",
        " anthropic",
        " claude",
        " ffmpeg",
        " llm",
        " mcp",
        " media-processing",
        " model-context-protocol",
        " natural-language",
        " ollama",
        " server",
        " tools",
        " video"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f0d55f1bfbe7018d95bcbabc513b4e123b16cc3439201bb8962ff136962b0382",
                "md5": "d71fca45cf7a2a1a5148949e445781a2",
                "sha256": "fb2fb7cc029133a34477ed6d3dbd7eb2a65c0add3e443e79c36abf1d3b46d727"
            },
            "downloads": -1,
            "filename": "mediallm_mcp-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d71fca45cf7a2a1a5148949e445781a2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 5767,
            "upload_time": "2025-08-31T17:54:04",
            "upload_time_iso_8601": "2025-08-31T17:54:04.161018Z",
            "url": "https://files.pythonhosted.org/packages/f0/d5/5f1bfbe7018d95bcbabc513b4e123b16cc3439201bb8962ff136962b0382/mediallm_mcp-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "87764af57f7015bc2ba07c9a96307fa4a2b4023aaeba0ed5c898c58815f1b78a",
                "md5": "cb769fcd32b4a335ebc66bb3b167d7e5",
                "sha256": "a64a46fe8c4dc4fc412411873e1c8a60879ba34d911306ffaf4eb769f4f0c155"
            },
            "downloads": -1,
            "filename": "mediallm_mcp-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "cb769fcd32b4a335ebc66bb3b167d7e5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 6853,
            "upload_time": "2025-08-31T17:54:07",
            "upload_time_iso_8601": "2025-08-31T17:54:07.169328Z",
            "url": "https://files.pythonhosted.org/packages/87/76/4af57f7015bc2ba07c9a96307fa4a2b4023aaeba0ed5c898c58815f1b78a/mediallm_mcp-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-31 17:54:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "iamarunbrahma",
    "github_project": "mediallm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mediallm-mcp"
}
        
Elapsed time: 1.20298s