# MedTExt - Medical Term Extractor from text
Raw data
{
"_id": null,
"home_page": "https://github.com/antoniolopezmc/medtext",
"name": "medtext",
"maintainer": "Antonio L\u00f3pez Mart\u00ednez-Carrasco",
"docs_url": null,
"requires_python": ">=3.13.0",
"maintainer_email": "antoniolopezmc1995@gmail.com",
"keywords": "python, data-science, machine-learning, data-analysis, large-language-models, generative-ai, medical-ontologies, clinical-ontologies",
"author": "Antonio L\u00f3pez Mart\u00ednez-Carrasco",
"author_email": "antoniolopezmc1995@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/43/28/2ba4a993bf326fc447ed3633990470d8b11d73f8e26cd5e2bfe40abf5055/medtext-0.0.1.tar.gz",
"platform": "any",
"description": "# MedTExt - Medical Term Extractor from text\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "MedTExt is a Python library for extracting medical terms from text using Large Language Models and standardized ontologies.",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/antoniolopezmc/medtext"
},
"split_keywords": [
"python",
" data-science",
" machine-learning",
" data-analysis",
" large-language-models",
" generative-ai",
" medical-ontologies",
" clinical-ontologies"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "629df09281c973ff6d0d20a0b733567caf213770684b0f2d590f86eaaefa577c",
"md5": "3d0f1fd4feb72f4247764ca7db3cc8d7",
"sha256": "47aa3a843e2916e994a16dcd3882a2d137cc15fa4fe533f197931ff407477b20"
},
"downloads": -1,
"filename": "medtext-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3d0f1fd4feb72f4247764ca7db3cc8d7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.13.0",
"size": 5015,
"upload_time": "2025-10-23T14:45:04",
"upload_time_iso_8601": "2025-10-23T14:45:04.106196Z",
"url": "https://files.pythonhosted.org/packages/62/9d/f09281c973ff6d0d20a0b733567caf213770684b0f2d590f86eaaefa577c/medtext-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "43282ba4a993bf326fc447ed3633990470d8b11d73f8e26cd5e2bfe40abf5055",
"md5": "03faa7be443f1dab71e7333a776a8b7d",
"sha256": "d4aaf4fb7a1ac5e34c4870bef01c4d5e6085eb180a76d99235b0e31fb0318fe6"
},
"downloads": -1,
"filename": "medtext-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "03faa7be443f1dab71e7333a776a8b7d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.13.0",
"size": 4362,
"upload_time": "2025-10-23T14:45:05",
"upload_time_iso_8601": "2025-10-23T14:45:05.488114Z",
"url": "https://files.pythonhosted.org/packages/43/28/2ba4a993bf326fc447ed3633990470d8b11d73f8e26cd5e2bfe40abf5055/medtext-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-23 14:45:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "antoniolopezmc",
"github_project": "medtext",
"github_not_found": true,
"lcname": "medtext"
}