# MEEGsim
[](https://doi.org/10.5281/zenodo.15106042)
## Overview
**MEEGsim** is a Python package that provides template waveforms for simulating M/EEG data with known ground truth source activity. In addition, it simplifies the manipulation of relevant simulation parameters (e.g., signal-to-noise ratio and source connectivity). As a result, the users can focus on _what_ to simulate, not on _how_ to implement the simulation. The package is compatible with MNE-Python and re-uses the forward and inverse modeling functionality provided by MNE.
Find more details about the package in the [documentation](https://meegsim.readthedocs.io/en/latest/). For a brief overview of the functionality, check the [poster](https://drive.google.com/file/d/14KVjHdnnEdUFOrbRWb59Rqsj_cwjElHV/view?usp=sharing) about MEEGsim that was presented at the [CuttingEEGX](https://cuttingeegx.org/) conference (28-31.10.2024, Nijmegen, The Netherlands, and online).
## Development
### Creating a Local Copy of the Project
1. Clone the repository.
2. Create an environment (conda/mamba/virtualenv).
3. Switch to the project folder and install the package and all dependencies:
```bash
cd meegsim
pip install -e .[dev]
```
4. You're ready to start now!
### Running Tests
```
pytest
```
### Building the Documentation
1. Install the required packages.
```bash
pip install -e .[docs]
```
2. Build the documentation.
```bash
make html
```
3. Open it in the web browser.
```bash
make show
```
Raw data
{
"_id": null,
"home_page": null,
"name": "meegsim",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "EEG, MEG, connectivity, simulation",
"author": "Alina Studenova, Mina Jamshidi Idaji",
"author_email": "Nikolai Kapralov <kapralov@cbs.mpg.de>",
"download_url": "https://files.pythonhosted.org/packages/10/be/837060594ba1eb2cb8b66de07d112d822da3819709d197709616312676e7/meegsim-0.0.2.tar.gz",
"platform": null,
"description": "# MEEGsim\n\n[](https://doi.org/10.5281/zenodo.15106042)\n\n## Overview\n\n**MEEGsim** is a Python package that provides template waveforms for simulating M/EEG data with known ground truth source activity. In addition, it simplifies the manipulation of relevant simulation parameters (e.g., signal-to-noise ratio and source connectivity). As a result, the users can focus on _what_ to simulate, not on _how_ to implement the simulation. The package is compatible with MNE-Python and re-uses the forward and inverse modeling functionality provided by MNE.\n\nFind more details about the package in the [documentation](https://meegsim.readthedocs.io/en/latest/). For a brief overview of the functionality, check the [poster](https://drive.google.com/file/d/14KVjHdnnEdUFOrbRWb59Rqsj_cwjElHV/view?usp=sharing) about MEEGsim that was presented at the [CuttingEEGX](https://cuttingeegx.org/) conference (28-31.10.2024, Nijmegen, The Netherlands, and online).\n\n## Development\n\n### Creating a Local Copy of the Project\n\n1. Clone the repository.\n\n2. Create an environment (conda/mamba/virtualenv).\n\n3. Switch to the project folder and install the package and all dependencies:\n\n```bash\ncd meegsim\npip install -e .[dev]\n```\n\n4. You're ready to start now!\n\n### Running Tests\n\n```\npytest\n```\n\n### Building the Documentation\n\n1. Install the required packages.\n\n```bash\npip install -e .[docs]\n```\n\n2. Build the documentation.\n\n```bash\nmake html\n```\n\n3. Open it in the web browser.\n\n```bash\nmake show\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Building blocks (waveforms, SNR, connectivity) for M/EEG simulations with MNE-Python",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://meegsim.readthedocs.io/",
"Homepage": "https://github.com/ctrltz/meegsim",
"Issues": "https://github.com/ctrltz/meegsim/issues"
},
"split_keywords": [
"eeg",
" meg",
" connectivity",
" simulation"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d5f24fef21c02f189a42f5f7cb981c5d574ebc2e9e7c4bbb2c163944382dd2c5",
"md5": "bd6bc7e67caf18f14803e77be41d0af5",
"sha256": "fa81eb84a7ae203c151f0ef87c6a55c4d8fd39d75accc1cea94ef3b1ab87e587"
},
"downloads": -1,
"filename": "meegsim-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bd6bc7e67caf18f14803e77be41d0af5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 37594,
"upload_time": "2025-08-25T05:36:15",
"upload_time_iso_8601": "2025-08-25T05:36:15.236059Z",
"url": "https://files.pythonhosted.org/packages/d5/f2/4fef21c02f189a42f5f7cb981c5d574ebc2e9e7c4bbb2c163944382dd2c5/meegsim-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "10be837060594ba1eb2cb8b66de07d112d822da3819709d197709616312676e7",
"md5": "5fe7bb4ac17b51ccbff565d2ccbbff92",
"sha256": "295c903303233e48da2e8ca80fc9f01cbb08e1c39ef9a2e5d1603b84b56e7e98"
},
"downloads": -1,
"filename": "meegsim-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "5fe7bb4ac17b51ccbff565d2ccbbff92",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 31431,
"upload_time": "2025-08-25T05:36:16",
"upload_time_iso_8601": "2025-08-25T05:36:16.792568Z",
"url": "https://files.pythonhosted.org/packages/10/be/837060594ba1eb2cb8b66de07d112d822da3819709d197709616312676e7/meegsim-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-25 05:36:16",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ctrltz",
"github_project": "meegsim",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "meegsim"
}