melizalab-tools


Namemelizalab-tools JSON
Version 2024.1.16 PyPI version JSON
download
home_pagehttps://github.com/melizalab/melizalab-tools
SummaryMeliza lab scripts and modules for auditory neurophysiology
upload_time2024-01-16 21:05:26
maintainerDan Meliza
docs_urlNone
authorDan Meliza
requires_python>=3.8
licenseBSD 3-Clause License
keywords neuroscience auditory
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            dlab
----

A collection of python code and scripts used by the Meliza Lab.

To install: ``pip install melizalab-tools``

modules
~~~~~~~

-  ``dlab.pprox``: functions for working with
   `pprox <https://meliza.org/spec:2/pprox/>`__ objects, a data format
   for storing multi-trial point process data (e.g. spike times evoked
   by stimulus presentation).

console scripts
~~~~~~~~~~~~~~~

-  ``group-kilo-spikes``: sort spike times output from
   `kilosort <https://github.com/MouseLand/Kilosort>`__ and
   `phy2 <https://github.com/cortex-lab/phy/>`__ into pprox files.

other stuff
~~~~~~~~~~~

-  ``scripts/extract_waveforms.py``: extracts spike waveforms from a raw
   recording (in ARF format) using spike times stored in a file (pprox
   format). This script is mostly only used to verify that spike sorting
   is working properly, because the ``group-kilo-spikes`` script has an
   option to store average waveforms.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/melizalab/melizalab-tools",
    "name": "melizalab-tools",
    "maintainer": "Dan Meliza",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "dan@meliza.org",
    "keywords": "neuroscience,auditory",
    "author": "Dan Meliza",
    "author_email": "dan@meliza.org",
    "download_url": "https://files.pythonhosted.org/packages/6e/3e/55e60df8f4426b8e2ee326d8ead1a587deef2574c99c3af5faa87165be2f/melizalab-tools-2024.1.16.tar.gz",
    "platform": null,
    "description": "dlab\n----\n\nA collection of python code and scripts used by the Meliza Lab.\n\nTo install: ``pip install melizalab-tools``\n\nmodules\n~~~~~~~\n\n-  ``dlab.pprox``: functions for working with\n   `pprox <https://meliza.org/spec:2/pprox/>`__ objects, a data format\n   for storing multi-trial point process data (e.g.\u00a0spike times evoked\n   by stimulus presentation).\n\nconsole scripts\n~~~~~~~~~~~~~~~\n\n-  ``group-kilo-spikes``: sort spike times output from\n   `kilosort <https://github.com/MouseLand/Kilosort>`__ and\n   `phy2 <https://github.com/cortex-lab/phy/>`__ into pprox files.\n\nother stuff\n~~~~~~~~~~~\n\n-  ``scripts/extract_waveforms.py``: extracts spike waveforms from a raw\n   recording (in ARF format) using spike times stored in a file (pprox\n   format). This script is mostly only used to verify that spike sorting\n   is working properly, because the ``group-kilo-spikes`` script has an\n   option to store average waveforms.\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "Meliza lab scripts and modules for auditory neurophysiology",
    "version": "2024.1.16",
    "project_urls": {
        "Homepage": "https://github.com/melizalab/melizalab-tools"
    },
    "split_keywords": [
        "neuroscience",
        "auditory"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0d870566459b5d6141fc82d90d4d4a9170d7eaaeabd6c4221e40d64dd1c30924",
                "md5": "d636d815a1059437e49d45d15ae7378f",
                "sha256": "e61d7d609e374fbeda0416c6516e7eed4c3476d5668a07ebf2234add62411a82"
            },
            "downloads": -1,
            "filename": "melizalab_tools-2024.1.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d636d815a1059437e49d45d15ae7378f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 24514,
            "upload_time": "2024-01-16T21:05:25",
            "upload_time_iso_8601": "2024-01-16T21:05:25.703381Z",
            "url": "https://files.pythonhosted.org/packages/0d/87/0566459b5d6141fc82d90d4d4a9170d7eaaeabd6c4221e40d64dd1c30924/melizalab_tools-2024.1.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6e3e55e60df8f4426b8e2ee326d8ead1a587deef2574c99c3af5faa87165be2f",
                "md5": "5ff750344f7a4432d96c9273fefe02a7",
                "sha256": "eccfb96d0aebebf7207627df870a29b9b7a68d6593aed282fa20ff7da07d87c6"
            },
            "downloads": -1,
            "filename": "melizalab-tools-2024.1.16.tar.gz",
            "has_sig": false,
            "md5_digest": "5ff750344f7a4432d96c9273fefe02a7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 24107,
            "upload_time": "2024-01-16T21:05:26",
            "upload_time_iso_8601": "2024-01-16T21:05:26.984405Z",
            "url": "https://files.pythonhosted.org/packages/6e/3e/55e60df8f4426b8e2ee326d8ead1a587deef2574c99c3af5faa87165be2f/melizalab-tools-2024.1.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-16 21:05:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "melizalab",
    "github_project": "melizalab-tools",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "melizalab-tools"
}
        
Elapsed time: 0.34301s