mellon


Namemellon JSON
Version 1.5.0 PyPI version JSON
download
home_pagehttps://github.com/settylab/mellon
SummaryNon-parametric density estimator.
upload_time2024-12-11 23:56:28
maintainerNone
docs_urlNone
authorSetty Lab
requires_pythonNone
licenseGNU General Public License v3.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Mellon
======

|zenodo| |codecov| |pypi| |conda|

.. image:: https://github.com/settylab/mellon/raw/main/landscape.png?raw=true
   :target: https://github.com/settylab/Mellon

Mellon is a non-parametric cell-state density estimator based on a
nearest-neighbors-distance distribution. It uses a sparse gaussian process
to produce a differntiable density function that can be evaluated out of sample.

Installation
============

To install Mellon using **pip** you can run:

.. code-block:: bash

   pip install mellon

or to install using **conda** you can run:

.. code-block:: bash

   conda install -c conda-forge mellon

or to install using **mamba** you can run:

.. code-block:: bash

   mamba install -c conda-forge mellon

Any of these calls should install Mellon and its dependencies within less than 1 minute.
If the dependency jax is not autimatically installed, please refer to https://github.com/google/jax.

Documentation
=============

Please read the
`documentation <https://mellon.readthedocs.io/en/latest/index.html>`_
or use this
`basic tutorial notebook <https://github.com/settylab/Mellon/blob/main/notebooks/basic_tutorial.ipynb>`_.


Basic Usage
===========

.. code-block:: python

    import mellon
    import numpy as np

    X = np.random.rand(100, 10)  # 10-dimensional state representation for 100 cells
    Y = np.random.rand(100, 10)  # arbitrary test data

    model = mellon.DensityEstimator()
    log_density_x = model.fit_predict(X)
    log_density_y = model.predict(Y)

Citations
=========

The Mellon manuscript is available on
`Nature Methods <https://www.nature.com/articles/s41592-024-02302-w>`_
and a preprint on
`bioRxiv <https://www.biorxiv.org/content/10.1101/2023.07.09.548272v1>`_.
If you use Mellon for your work, please cite our paper.

.. code-block:: bibtex

    @article{ottoQuantifyingCellstateDensities2024,
      title = {Quantifying Cell-State Densities in Single-Cell Phenotypic Landscapes Using {{Mellon}}},
      author = {Otto, Dominik J. and Jordan, Cailin and Dury, Brennan and Dien, Christine and Setty, Manu},
      date = {2024-06-18},
      journaltitle = {Nature Methods},
      issn = {1548-7105},
      doi = {10.1038/s41592-024-02302-w},
      url = {https://www.nature.com/articles/s41592-024-02302-w},
    }

You can find our
`reproducibility repository <https://github.com/settylab/MellonReproducibility>`_
to reproduce benchmarks and plots of the paper
`here <https://github.com/settylab/MellonReproducibility>`_.


.. |zenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8404223.svg
     :target: https://doi.org/10.5281/zenodo.8404223
.. |codecov| image:: https://codecov.io/github/settylab/Mellon/branch/main/graph/badge.svg?token=TKIKXK4MPG 
    :target: https://app.codecov.io/github/settylab/Mellon
.. |pypi| image:: https://badge.fury.io/py/mellon.svg
       :target: https://badge.fury.io/py/mellon
.. |conda| image:: https://anaconda.org/conda-forge/mellon/badges/version.svg
       :target: https://anaconda.org/conda-forge/mellon

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/settylab/mellon",
    "name": "mellon",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Setty Lab",
    "author_email": "dominik.otto@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3e/05/5ef5e055cec92ae981366ac06b8b67b1790405c9d9853009ca46e5b43a01/mellon-1.5.0.tar.gz",
    "platform": null,
    "description": "Mellon\n======\n\n|zenodo| |codecov| |pypi| |conda|\n\n.. image:: https://github.com/settylab/mellon/raw/main/landscape.png?raw=true\n   :target: https://github.com/settylab/Mellon\n\nMellon is a non-parametric cell-state density estimator based on a\nnearest-neighbors-distance distribution. It uses a sparse gaussian process\nto produce a differntiable density function that can be evaluated out of sample.\n\nInstallation\n============\n\nTo install Mellon using **pip** you can run:\n\n.. code-block:: bash\n\n   pip install mellon\n\nor to install using **conda** you can run:\n\n.. code-block:: bash\n\n   conda install -c conda-forge mellon\n\nor to install using **mamba** you can run:\n\n.. code-block:: bash\n\n   mamba install -c conda-forge mellon\n\nAny of these calls should install Mellon and its dependencies within less than 1 minute.\nIf the dependency jax is not autimatically installed, please refer to https://github.com/google/jax.\n\nDocumentation\n=============\n\nPlease read the\n`documentation <https://mellon.readthedocs.io/en/latest/index.html>`_\nor use this\n`basic tutorial notebook <https://github.com/settylab/Mellon/blob/main/notebooks/basic_tutorial.ipynb>`_.\n\n\nBasic Usage\n===========\n\n.. code-block:: python\n\n    import mellon\n    import numpy as np\n\n    X = np.random.rand(100, 10)  # 10-dimensional state representation for 100 cells\n    Y = np.random.rand(100, 10)  # arbitrary test data\n\n    model = mellon.DensityEstimator()\n    log_density_x = model.fit_predict(X)\n    log_density_y = model.predict(Y)\n\nCitations\n=========\n\nThe Mellon manuscript is available on\n`Nature Methods <https://www.nature.com/articles/s41592-024-02302-w>`_\nand a preprint on\n`bioRxiv <https://www.biorxiv.org/content/10.1101/2023.07.09.548272v1>`_.\nIf you use Mellon for your work, please cite our paper.\n\n.. code-block:: bibtex\n\n    @article{ottoQuantifyingCellstateDensities2024,\n      title = {Quantifying Cell-State Densities in Single-Cell Phenotypic Landscapes Using {{Mellon}}},\n      author = {Otto, Dominik J. and Jordan, Cailin and Dury, Brennan and Dien, Christine and Setty, Manu},\n      date = {2024-06-18},\n      journaltitle = {Nature Methods},\n      issn = {1548-7105},\n      doi = {10.1038/s41592-024-02302-w},\n      url = {https://www.nature.com/articles/s41592-024-02302-w},\n    }\n\nYou can find our\n`reproducibility repository <https://github.com/settylab/MellonReproducibility>`_\nto reproduce benchmarks and plots of the paper\n`here <https://github.com/settylab/MellonReproducibility>`_.\n\n\n.. |zenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8404223.svg\n     :target: https://doi.org/10.5281/zenodo.8404223\n.. |codecov| image:: https://codecov.io/github/settylab/Mellon/branch/main/graph/badge.svg?token=TKIKXK4MPG \n    :target: https://app.codecov.io/github/settylab/Mellon\n.. |pypi| image:: https://badge.fury.io/py/mellon.svg\n       :target: https://badge.fury.io/py/mellon\n.. |conda| image:: https://anaconda.org/conda-forge/mellon/badges/version.svg\n       :target: https://anaconda.org/conda-forge/mellon\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3.0",
    "summary": "Non-parametric density estimator.",
    "version": "1.5.0",
    "project_urls": {
        "Homepage": "https://github.com/settylab/mellon"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "03b86406834bd5bb4f5da09fa2f032243bcfaf13af42fe963663e0e5c66a826d",
                "md5": "e79d68e22cee5a378093cc23200f4c0b",
                "sha256": "3832cdf1c15312bda2654183db81bdf0d431b7da2d7c3d2dd0abeaeb7d5c3cb4"
            },
            "downloads": -1,
            "filename": "mellon-1.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e79d68e22cee5a378093cc23200f4c0b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 94078,
            "upload_time": "2024-12-11T23:56:23",
            "upload_time_iso_8601": "2024-12-11T23:56:23.650931Z",
            "url": "https://files.pythonhosted.org/packages/03/b8/6406834bd5bb4f5da09fa2f032243bcfaf13af42fe963663e0e5c66a826d/mellon-1.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3e055ef5e055cec92ae981366ac06b8b67b1790405c9d9853009ca46e5b43a01",
                "md5": "4fed39f23ec0fbbdc663622e21026c9e",
                "sha256": "5731e09d5f82c7f8e3849b12ec9c7dd0b6afbab1a6c70842e99e5d4478954edb"
            },
            "downloads": -1,
            "filename": "mellon-1.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4fed39f23ec0fbbdc663622e21026c9e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 92557,
            "upload_time": "2024-12-11T23:56:28",
            "upload_time_iso_8601": "2024-12-11T23:56:28.094080Z",
            "url": "https://files.pythonhosted.org/packages/3e/05/5ef5e055cec92ae981366ac06b8b67b1790405c9d9853009ca46e5b43a01/mellon-1.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-11 23:56:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "settylab",
    "github_project": "mellon",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "mellon"
}
        
Elapsed time: 0.38805s