Mellon
======
|zenodo| |codecov| |pypi| |conda|
.. image:: https://github.com/settylab/mellon/raw/main/landscape.png?raw=true
:target: https://github.com/settylab/Mellon
Mellon is a non-parametric cell-state density estimator based on a
nearest-neighbors-distance distribution. It uses a sparse gaussian process
to produce a differntiable density function that can be evaluated out of sample.
Installation
============
To install Mellon using **pip** you can run:
.. code-block:: bash
pip install mellon
or to install using **conda** you can run:
.. code-block:: bash
conda install -c conda-forge mellon
or to install using **mamba** you can run:
.. code-block:: bash
mamba install -c conda-forge mellon
Any of these calls should install Mellon and its dependencies within less than 1 minute.
If the dependency jax is not autimatically installed, please refer to https://github.com/google/jax.
Documentation
=============
Please read the
`documentation <https://mellon.readthedocs.io/en/latest/index.html>`_
or use this
`basic tutorial notebook <https://github.com/settylab/Mellon/blob/main/notebooks/basic_tutorial.ipynb>`_.
Basic Usage
===========
.. code-block:: python
import mellon
import numpy as np
X = np.random.rand(100, 10) # 10-dimensional state representation for 100 cells
Y = np.random.rand(100, 10) # arbitrary test data
model = mellon.DensityEstimator()
log_density_x = model.fit_predict(X)
log_density_y = model.predict(Y)
Citations
=========
The Mellon manuscript is available on
`bioRxiv <https://www.biorxiv.org/content/10.1101/2023.07.09.548272v1>`_
If you use Mellon for your work, please cite our paper.
.. code-block:: bibtex
@article{ottoQuantifyingCellstateDensities2024,
title = {Quantifying Cell-State Densities in Single-Cell Phenotypic Landscapes Using {{Mellon}}},
author = {Otto, Dominik J. and Jordan, Cailin and Dury, Brennan and Dien, Christine and Setty, Manu},
date = {2024-06-18},
journaltitle = {Nature Methods},
issn = {1548-7105},
doi = {10.1038/s41592-024-02302-w},
url = {https://www.nature.com/articles/s41592-024-02302-w},
}
.. |zenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8404223.svg
:target: https://doi.org/10.5281/zenodo.8404223
.. |codecov| image:: https://codecov.io/github/settylab/Mellon/branch/main/graph/badge.svg?token=TKIKXK4MPG
:target: https://app.codecov.io/github/settylab/Mellon
.. |pypi| image:: https://badge.fury.io/py/mellon.svg
:target: https://badge.fury.io/py/mellon
.. |conda| image:: https://anaconda.org/conda-forge/mellon/badges/version.svg
:target: https://anaconda.org/conda-forge/mellon
Raw data
{
"_id": null,
"home_page": "https://github.com/settylab/mellon",
"name": "mellon",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Setty Lab",
"author_email": "dominik.otto@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b5/87/2b0a0436321e189552095439c6f6a08beb2ebbcea2103f2f5b13926fd6df/mellon-1.4.3.tar.gz",
"platform": null,
"description": "Mellon\n======\n\n|zenodo| |codecov| |pypi| |conda|\n\n.. image:: https://github.com/settylab/mellon/raw/main/landscape.png?raw=true\n :target: https://github.com/settylab/Mellon\n\nMellon is a non-parametric cell-state density estimator based on a\nnearest-neighbors-distance distribution. It uses a sparse gaussian process\nto produce a differntiable density function that can be evaluated out of sample.\n\nInstallation\n============\n\nTo install Mellon using **pip** you can run:\n\n.. code-block:: bash\n\n pip install mellon\n\nor to install using **conda** you can run:\n\n.. code-block:: bash\n\n conda install -c conda-forge mellon\n\nor to install using **mamba** you can run:\n\n.. code-block:: bash\n\n mamba install -c conda-forge mellon\n\nAny of these calls should install Mellon and its dependencies within less than 1 minute.\nIf the dependency jax is not autimatically installed, please refer to https://github.com/google/jax.\n\nDocumentation\n=============\n\nPlease read the\n`documentation <https://mellon.readthedocs.io/en/latest/index.html>`_\nor use this\n`basic tutorial notebook <https://github.com/settylab/Mellon/blob/main/notebooks/basic_tutorial.ipynb>`_.\n\n\nBasic Usage\n===========\n\n.. code-block:: python\n\n import mellon\n import numpy as np\n\n X = np.random.rand(100, 10) # 10-dimensional state representation for 100 cells\n Y = np.random.rand(100, 10) # arbitrary test data\n\n model = mellon.DensityEstimator()\n log_density_x = model.fit_predict(X)\n log_density_y = model.predict(Y)\n\nCitations\n=========\n\nThe Mellon manuscript is available on\n`bioRxiv <https://www.biorxiv.org/content/10.1101/2023.07.09.548272v1>`_\nIf you use Mellon for your work, please cite our paper.\n\n.. code-block:: bibtex\n\n @article{ottoQuantifyingCellstateDensities2024,\n title = {Quantifying Cell-State Densities in Single-Cell Phenotypic Landscapes Using {{Mellon}}},\n author = {Otto, Dominik J. and Jordan, Cailin and Dury, Brennan and Dien, Christine and Setty, Manu},\n date = {2024-06-18},\n journaltitle = {Nature Methods},\n issn = {1548-7105},\n doi = {10.1038/s41592-024-02302-w},\n url = {https://www.nature.com/articles/s41592-024-02302-w},\n }\n\n\n\n.. |zenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8404223.svg\n :target: https://doi.org/10.5281/zenodo.8404223\n.. |codecov| image:: https://codecov.io/github/settylab/Mellon/branch/main/graph/badge.svg?token=TKIKXK4MPG \n :target: https://app.codecov.io/github/settylab/Mellon\n.. |pypi| image:: https://badge.fury.io/py/mellon.svg\n :target: https://badge.fury.io/py/mellon\n.. |conda| image:: https://anaconda.org/conda-forge/mellon/badges/version.svg\n :target: https://anaconda.org/conda-forge/mellon\n",
"bugtrack_url": null,
"license": "GNU General Public License v3.0",
"summary": "Non-parametric density estimator.",
"version": "1.4.3",
"project_urls": {
"Homepage": "https://github.com/settylab/mellon"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b5baff60f299d2c0977c1683a3dc4a8b3150d9b5293fa444c8ba4ee714bd9efe",
"md5": "9fe3639aa8b80b491e339f0122c6d3e4",
"sha256": "91607e39d6e8b6804722c96924a28f74cc1403ed14dd9f1bd49d17ec49df0353"
},
"downloads": -1,
"filename": "mellon-1.4.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9fe3639aa8b80b491e339f0122c6d3e4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 95963,
"upload_time": "2024-06-20T04:03:59",
"upload_time_iso_8601": "2024-06-20T04:03:59.850963Z",
"url": "https://files.pythonhosted.org/packages/b5/ba/ff60f299d2c0977c1683a3dc4a8b3150d9b5293fa444c8ba4ee714bd9efe/mellon-1.4.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b5872b0a0436321e189552095439c6f6a08beb2ebbcea2103f2f5b13926fd6df",
"md5": "ae0b6b1a519e8e097df06c05028ced78",
"sha256": "388815906245ed47041442f482ae0a77699949d40d69fb50bd1197dcef9b8e8b"
},
"downloads": -1,
"filename": "mellon-1.4.3.tar.gz",
"has_sig": false,
"md5_digest": "ae0b6b1a519e8e097df06c05028ced78",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 92055,
"upload_time": "2024-06-20T04:04:01",
"upload_time_iso_8601": "2024-06-20T04:04:01.352202Z",
"url": "https://files.pythonhosted.org/packages/b5/87/2b0a0436321e189552095439c6f6a08beb2ebbcea2103f2f5b13926fd6df/mellon-1.4.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-20 04:04:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "settylab",
"github_project": "mellon",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "mellon"
}