melowrag


Namemelowrag JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/erfanzar/melowrag
Summarya modular Python framework for semantic search, vector indexing, and retrieval-augmented generation
upload_time2025-07-16 13:22:03
maintainerNone
docs_urlNone
authorErfan Zare Chavoshi
requires_python<3.14,>=3.10
licenseApache-2.0
keywords deep learning machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MelowRAG

MelowRAG is a modular Python framework for semantic search, vector indexing, and retrieval-augmented generation (RAG). It provides a unified interface for embedding, indexing, searching, and managing data using dense, sparse, and hybrid vector models.

## Features

- **Embeddings Management**: Transform data into embeddings using various backends.
- **Flexible Indexing**: Build, update, and search indexes with support for dense, sparse, and hybrid models.
- **Database Integration**: Store and retrieve content using pluggable database backends.
- **Graph Algorithms**: Advanced graph-based search and topic modeling.
- **Pipelines**: Modular pipelines for text, audio, and image processing.
- **Remote Storage**: Archive and load indexes from local or cloud storage.
- **Extensible**: Easily add new models, scoring functions, or storage backends.

## Quick Start

```python
from melowrag import Embeddings

# Initialize embeddings
embedding = Embeddings()

# Index some texts
texts = ["The cat sat on the mat.", "Dogs are wonderful companions."]
embedding.index(texts)

# Search for similar content
results = embedding.search("animal companions", 1)
for result in results:
    print(f"Index: {result.index}, Score: {result.score}")
```
 

## Installation

```bash
pip install -e .
```

## License

This project is licensed under the terms of the MIT license.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/erfanzar/melowrag",
    "name": "melowrag",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.10",
    "maintainer_email": null,
    "keywords": "Deep Learning, Machine Learning",
    "author": "Erfan Zare Chavoshi",
    "author_email": "Erfanzare810@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/06/93/65d2b743c26696240dbb49660c542d42a831c623cef2ed5f22826795735e/melowrag-0.0.1.tar.gz",
    "platform": null,
    "description": "# MelowRAG\n\nMelowRAG is a modular Python framework for semantic search, vector indexing, and retrieval-augmented generation (RAG). It provides a unified interface for embedding, indexing, searching, and managing data using dense, sparse, and hybrid vector models.\n\n## Features\n\n- **Embeddings Management**: Transform data into embeddings using various backends.\n- **Flexible Indexing**: Build, update, and search indexes with support for dense, sparse, and hybrid models.\n- **Database Integration**: Store and retrieve content using pluggable database backends.\n- **Graph Algorithms**: Advanced graph-based search and topic modeling.\n- **Pipelines**: Modular pipelines for text, audio, and image processing.\n- **Remote Storage**: Archive and load indexes from local or cloud storage.\n- **Extensible**: Easily add new models, scoring functions, or storage backends.\n\n## Quick Start\n\n```python\nfrom melowrag import Embeddings\n\n# Initialize embeddings\nembedding = Embeddings()\n\n# Index some texts\ntexts = [\"The cat sat on the mat.\", \"Dogs are wonderful companions.\"]\nembedding.index(texts)\n\n# Search for similar content\nresults = embedding.search(\"animal companions\", 1)\nfor result in results:\n    print(f\"Index: {result.index}, Score: {result.score}\")\n```\n \n\n## Installation\n\n```bash\npip install -e .\n```\n\n## License\n\nThis project is licensed under the terms of the MIT license.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "a modular Python framework for semantic search, vector indexing, and retrieval-augmented generation",
    "version": "0.0.1",
    "project_urls": {
        "Documentation": "https://melowrag.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/erfanzar/melowrag",
        "Repository": "https://github.com/erfanzar/melowrag"
    },
    "split_keywords": [
        "deep learning",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d3640eeb712742ffc2eb069281ff1fd2d65bcf2ab17a4c1b0811e407e0fefc0c",
                "md5": "bad15d05441a9d111e0533b4fb5d9de7",
                "sha256": "829d3e42462addba9a98066f32ee6214889f5bd59fc1e558613d31ce2580945f"
            },
            "downloads": -1,
            "filename": "melowrag-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bad15d05441a9d111e0533b4fb5d9de7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.10",
            "size": 257946,
            "upload_time": "2025-07-16T13:22:01",
            "upload_time_iso_8601": "2025-07-16T13:22:01.914472Z",
            "url": "https://files.pythonhosted.org/packages/d3/64/0eeb712742ffc2eb069281ff1fd2d65bcf2ab17a4c1b0811e407e0fefc0c/melowrag-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "069365d2b743c26696240dbb49660c542d42a831c623cef2ed5f22826795735e",
                "md5": "bf4103608a5ddc6af4f0fb25ae756201",
                "sha256": "fc1272f571358f0cda2175688a845c83325173f5e65fb63735b22bf674133675"
            },
            "downloads": -1,
            "filename": "melowrag-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "bf4103608a5ddc6af4f0fb25ae756201",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.10",
            "size": 123075,
            "upload_time": "2025-07-16T13:22:03",
            "upload_time_iso_8601": "2025-07-16T13:22:03.210858Z",
            "url": "https://files.pythonhosted.org/packages/06/93/65d2b743c26696240dbb49660c542d42a831c623cef2ed5f22826795735e/melowrag-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-16 13:22:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "erfanzar",
    "github_project": "melowrag",
    "github_not_found": true,
    "lcname": "melowrag"
}
        
Elapsed time: 1.49023s