mem0-embeddings-litellm-patch


Namemem0-embeddings-litellm-patch JSON
Version 1.0.9 PyPI version JSON
download
home_pageNone
SummaryAlmost all known embedding model providers available via litellm patch
upload_time2025-08-02 03:09:34
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords mem0 litellm embeddings ai memory patch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mem0-embeddings-litellm-patch

This patch adds support for embedding model providers via [LiteLLM](https://github.com/BerriAI/litellm) to the [mem0](https://github.com/mem0-ai/mem0) framework.

## ✨ What It Does

- Integrates nearly all providers supported by LiteLLM as embedding backends in mem0
- Enables use of high-performance providers like **VoyageAI**, **Mistral**, **Groq**, and more
- Drop-in replacement for the existing embedding logic

## 🔧 Installation

You can install the patch via pip:

```bash
pip install mem0-embeddings-litellm-patch
````

This will patch the necessary `mem0.embeddings` modules automatically.

> **Note:** Make sure `mem0` and `litellm` are installed as dependencies. This package does not install them implicitly.

## 🧠 Requirements

* Python >= 3.8
* `mem0` >= 0.1.0
* `litellm` >= 1.0.0

## 💡 Usage

After installing this patch you can use all embedding providers available via litellm inncluding those currently not supported via mem0 natively. 

## 📢 Why This Exists

The mem0 maintainers have not yet merged support for LiteLLM-based embeddings, despite it being a fast, extensible abstraction layer.
This patch bridges the gap until (or if) native support is added upstream. No need to fork and maintain a full project if you can just maintain the patch files instead am i right? :D No need to fork and maintain a full project if you can just maintain the patch files instead am i right? :D

## 📬 Feedback / Contributing

Feel free to fork or open issues. If the mem0 team integrates this feature officially, this package may be deprecated in favor of upstream support.

---

Licensed under the MIT License.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mem0-embeddings-litellm-patch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Nocyphr <sgu@nocyphr.com>",
    "keywords": "mem0, litellm, embeddings, ai, memory, patch",
    "author": null,
    "author_email": "Nocyphr <sgu@nocyphr.com>",
    "download_url": "https://files.pythonhosted.org/packages/68/c5/8f4ec4c836da47e0f7e4e08cd79c99828b9c38eb55455ef2bcc42b74bf5e/mem0_embeddings_litellm_patch-1.0.9.tar.gz",
    "platform": null,
    "description": "# mem0-embeddings-litellm-patch\n\nThis patch adds support for embedding model providers via [LiteLLM](https://github.com/BerriAI/litellm) to the [mem0](https://github.com/mem0-ai/mem0) framework.\n\n## \u2728 What It Does\n\n- Integrates nearly all providers supported by LiteLLM as embedding backends in mem0\n- Enables use of high-performance providers like **VoyageAI**, **Mistral**, **Groq**, and more\n- Drop-in replacement for the existing embedding logic\n\n## \ud83d\udd27 Installation\n\nYou can install the patch via pip:\n\n```bash\npip install mem0-embeddings-litellm-patch\n````\n\nThis will patch the necessary `mem0.embeddings` modules automatically.\n\n> **Note:** Make sure `mem0` and `litellm` are installed as dependencies. This package does not install them implicitly.\n\n## \ud83e\udde0 Requirements\n\n* Python >= 3.8\n* `mem0` >= 0.1.0\n* `litellm` >= 1.0.0\n\n## \ud83d\udca1 Usage\n\nAfter installing this patch you can use all embedding providers available via litellm inncluding those currently not supported via mem0 natively. \n\n## \ud83d\udce2 Why This Exists\n\nThe mem0 maintainers have not yet merged support for LiteLLM-based embeddings, despite it being a fast, extensible abstraction layer.\nThis patch bridges the gap until (or if) native support is added upstream. No need to fork and maintain a full project if you can just maintain the patch files instead am i right? :D No need to fork and maintain a full project if you can just maintain the patch files instead am i right? :D\n\n## \ud83d\udcec Feedback / Contributing\n\nFeel free to fork or open issues. If the mem0 team integrates this feature officially, this package may be deprecated in favor of upstream support.\n\n---\n\nLicensed under the MIT License.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Almost all known embedding model providers available via litellm patch",
    "version": "1.0.9",
    "project_urls": {
        "Homepage": "https://github.com/nocyphr/mem0-embeddings-litellm-patch",
        "Repository": "https://github.com/nocyphr/mem0-embeddings-litellm-patch"
    },
    "split_keywords": [
        "mem0",
        " litellm",
        " embeddings",
        " ai",
        " memory",
        " patch"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bb7b223e80347cc728ba3fa307b46b377b8a8191afe32df3270ddf41388ee01d",
                "md5": "3084fb8c32567def97a392d2ea5d6267",
                "sha256": "a95e1f2c74e1020b1184ea429a1c6e35e290b7636dbbe4bdbb535533ffa9c7de"
            },
            "downloads": -1,
            "filename": "mem0_embeddings_litellm_patch-1.0.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3084fb8c32567def97a392d2ea5d6267",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5362,
            "upload_time": "2025-08-02T03:09:33",
            "upload_time_iso_8601": "2025-08-02T03:09:33.459743Z",
            "url": "https://files.pythonhosted.org/packages/bb/7b/223e80347cc728ba3fa307b46b377b8a8191afe32df3270ddf41388ee01d/mem0_embeddings_litellm_patch-1.0.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "68c58f4ec4c836da47e0f7e4e08cd79c99828b9c38eb55455ef2bcc42b74bf5e",
                "md5": "c43598f2e71896b7b5e41430ce0b2e9d",
                "sha256": "87dafb5d4deb3c353d2a843cfa4b62b64621a614b86146313ecff85a9b8b6048"
            },
            "downloads": -1,
            "filename": "mem0_embeddings_litellm_patch-1.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "c43598f2e71896b7b5e41430ce0b2e9d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4544,
            "upload_time": "2025-08-02T03:09:34",
            "upload_time_iso_8601": "2025-08-02T03:09:34.692164Z",
            "url": "https://files.pythonhosted.org/packages/68/c5/8f4ec4c836da47e0f7e4e08cd79c99828b9c38eb55455ef2bcc42b74bf5e/mem0_embeddings_litellm_patch-1.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-02 03:09:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nocyphr",
    "github_project": "mem0-embeddings-litellm-patch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "mem0-embeddings-litellm-patch"
}
        
Elapsed time: 1.58327s