# Memrise audio uploader
[](https://pypi.org/project/memrise-audio-uploader)
[](./LICENSE)
[](https://github.com/ollipa/memrise-audio-uploader/actions/workflows/ci.yml)
A command-line tool to upload text-to-speech audio to Memrise courses. Audio is generated using Google Text-to-Speech synthesizator.
<img src="https://user-images.githubusercontent.com/25169984/112717668-91f73980-8f31-11eb-9908-bbfe19e2c065.png" width="600" height="323">
## Installation
The tool can be installed using Pip with the following command:
```sh
pip install memrise-audio-uploader
```
After installation you can start the tool using Python:
```sh
python -m memrise_audio_uploader
```
## Usage
You can input your Memrise credentials when prompted in the command line or alternatively you can define them in a dotenv file. Save `MEMRISE_USERNAME` and/or `MEMRISE_PASSWORD` to a `.env` file in your current folder.
You will need access to a Google Cloud project with Google Cloud Text to Speech API enabled. The application uses default credentials for accessing Google Cloud. For more information, see:
- [Getting started with Cloud SDK](https://cloud.google.com/sdk)
- [Cloud SDK Application Default Credentials](https://cloud.google.com/sdk/gcloud/reference/auth/application-default)
- [Cloud Text-to-Speech - Quickstart](https://cloud.google.com/text-to-speech/docs/quickstart-protocol)
Raw data
{
"_id": null,
"home_page": "https://github.com/ollipa/memrise-audio-uploader",
"name": "memrise_audio_uploader",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "",
"author": "Olli Paakkunainen",
"author_email": "olli@paakkunainen.fi",
"download_url": "https://files.pythonhosted.org/packages/10/3b/0cc4e3dc42a9ca9b21ef4639c98af183a6d7424189b1bc353955e99202c8/memrise_audio_uploader-0.3.1.tar.gz",
"platform": null,
"description": "# Memrise audio uploader\n\n[](https://pypi.org/project/memrise-audio-uploader)\n[](./LICENSE)\n[](https://github.com/ollipa/memrise-audio-uploader/actions/workflows/ci.yml)\n\nA command-line tool to upload text-to-speech audio to Memrise courses. Audio is generated using Google Text-to-Speech synthesizator.\n\n<img src=\"https://user-images.githubusercontent.com/25169984/112717668-91f73980-8f31-11eb-9908-bbfe19e2c065.png\" width=\"600\" height=\"323\">\n\n## Installation\n\nThe tool can be installed using Pip with the following command:\n\n```sh\npip install memrise-audio-uploader\n```\n\nAfter installation you can start the tool using Python:\n\n```sh\npython -m memrise_audio_uploader\n```\n\n## Usage\n\nYou can input your Memrise credentials when prompted in the command line or alternatively you can define them in a dotenv file. Save `MEMRISE_USERNAME` and/or `MEMRISE_PASSWORD` to a `.env` file in your current folder.\n\nYou will need access to a Google Cloud project with Google Cloud Text to Speech API enabled. The application uses default credentials for accessing Google Cloud. For more information, see:\n\n- [Getting started with Cloud SDK](https://cloud.google.com/sdk)\n- [Cloud SDK Application Default Credentials](https://cloud.google.com/sdk/gcloud/reference/auth/application-default)\n- [Cloud Text-to-Speech - Quickstart](https://cloud.google.com/text-to-speech/docs/quickstart-protocol)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Memrise audio uploader",
"version": "0.3.1",
"project_urls": {
"Homepage": "https://github.com/ollipa/memrise-audio-uploader",
"Repository": "https://github.com/ollipa/memrise-audio-uploader"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bac5e9ee6caf6d02b6328d033180faa50aef8a637f6f833300f2584cfa003da5",
"md5": "f835607f918521b024aff73f100717bc",
"sha256": "5e35dfe67d5ec2646c4cb9a69da2812d70d14d99ba1913aa68c0bb0a46ae8248"
},
"downloads": -1,
"filename": "memrise_audio_uploader-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f835607f918521b024aff73f100717bc",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 10391,
"upload_time": "2023-09-10T17:25:30",
"upload_time_iso_8601": "2023-09-10T17:25:30.201058Z",
"url": "https://files.pythonhosted.org/packages/ba/c5/e9ee6caf6d02b6328d033180faa50aef8a637f6f833300f2584cfa003da5/memrise_audio_uploader-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "103b0cc4e3dc42a9ca9b21ef4639c98af183a6d7424189b1bc353955e99202c8",
"md5": "30be97869728278e7668c5eb0dfd8c19",
"sha256": "83fa7373a6d117c7fca41317a55f36aa0a811e97b8cbb1f409635833bcb094ee"
},
"downloads": -1,
"filename": "memrise_audio_uploader-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "30be97869728278e7668c5eb0dfd8c19",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 8933,
"upload_time": "2023-09-10T17:25:31",
"upload_time_iso_8601": "2023-09-10T17:25:31.441162Z",
"url": "https://files.pythonhosted.org/packages/10/3b/0cc4e3dc42a9ca9b21ef4639c98af183a6d7424189b1bc353955e99202c8/memrise_audio_uploader-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-10 17:25:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ollipa",
"github_project": "memrise-audio-uploader",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "memrise_audio_uploader"
}