meritrank-python


Namemeritrank-python JSON
Version 0.2.10 PyPI version JSON
download
home_pagehttps://github.com/ichorid/meritrank-python
SummaryMeritRank decentralized, sybil-resistant, personalized ranking algorithm library
upload_time2024-02-16 21:10:45
maintainer
docs_urlNone
authorV.G. Bulavintsev
requires_python>=3.10
licenseGPLv2
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Copyright: Vadim Bulavintsev (GPL v2)

# MeritRank Python implementation

This repository contains the Python implementation for the incremental version of the MeritRank 
scoring system (which is inspired by personalized PageRank).


## Usage example
```python
from meritrank_python.rank import IncrementalMeritRank

pr = IncrementalMeritRank()

pr.add_edge(0, 1, )
pr.add_edge(0, 2, weight=0.5)
pr.add_edge(1, 2, weight=2.0)

# Initalize calculating rank from the standpoint of node "0"
pr.calculate(0)

# Get the score for node "1" from the standpoint of the node "0" 
print(pr.get_node_score(0, 1))

# Add another edge: note that the scores are automatically recalculated
pr.add_edge(2, 1, weight=3.0)
print(pr.get_node_score(0, 1))

```

## Known issues and limitations
* The bookkeeping algorithm for the incremental 
addition-deletion of edges is pretty complex.  
Initial tests show its results are equivalent to non-incremental version,
at least for all possible transitions between all possible meaningful 3- and 4-nodes graphs.
Nonetheless, it is hard to predict how the thing will work in real-life scenarios.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ichorid/meritrank-python",
    "name": "meritrank-python",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "",
    "author": "V.G. Bulavintsev",
    "author_email": "golem.md@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c5/d1/28864959d48c78ea42f6894cbf7e9923250b156d8e7a4258ad261a44b4ae/meritrank_python-0.2.10.tar.gz",
    "platform": null,
    "description": "Copyright: Vadim Bulavintsev (GPL v2)\n\n# MeritRank Python implementation\n\nThis repository contains the Python implementation for the incremental version of the MeritRank \nscoring system (which is inspired by personalized PageRank).\n\n\n## Usage example\n```python\nfrom meritrank_python.rank import IncrementalMeritRank\n\npr = IncrementalMeritRank()\n\npr.add_edge(0, 1, )\npr.add_edge(0, 2, weight=0.5)\npr.add_edge(1, 2, weight=2.0)\n\n# Initalize calculating rank from the standpoint of node \"0\"\npr.calculate(0)\n\n# Get the score for node \"1\" from the standpoint of the node \"0\" \nprint(pr.get_node_score(0, 1))\n\n# Add another edge: note that the scores are automatically recalculated\npr.add_edge(2, 1, weight=3.0)\nprint(pr.get_node_score(0, 1))\n\n```\n\n## Known issues and limitations\n* The bookkeeping algorithm for the incremental \naddition-deletion of edges is pretty complex.  \nInitial tests show its results are equivalent to non-incremental version,\nat least for all possible transitions between all possible meaningful 3- and 4-nodes graphs.\nNonetheless, it is hard to predict how the thing will work in real-life scenarios.\n",
    "bugtrack_url": null,
    "license": "GPLv2",
    "summary": "MeritRank decentralized, sybil-resistant, personalized ranking algorithm library",
    "version": "0.2.10",
    "project_urls": {
        "Homepage": "https://github.com/ichorid/meritrank-python",
        "Repository": "https://github.com/ichorid/meritrank-python"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af991a361788cd210b99984dc4823833befbe2ddf6c9f01fbf2ed7a0cbeed5e2",
                "md5": "56ee3efba5a98e86ef7d5d46b938c385",
                "sha256": "a8a5c7e40ed19249d5e60bf0620bb7787921ebbccd9379dbdc7a0a0240456767"
            },
            "downloads": -1,
            "filename": "meritrank_python-0.2.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "56ee3efba5a98e86ef7d5d46b938c385",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 16056,
            "upload_time": "2024-02-16T21:10:44",
            "upload_time_iso_8601": "2024-02-16T21:10:44.492811Z",
            "url": "https://files.pythonhosted.org/packages/af/99/1a361788cd210b99984dc4823833befbe2ddf6c9f01fbf2ed7a0cbeed5e2/meritrank_python-0.2.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c5d128864959d48c78ea42f6894cbf7e9923250b156d8e7a4258ad261a44b4ae",
                "md5": "d3b7639597aa9256698ea21371261e09",
                "sha256": "0caa532a987e795d1722fe1621a78c9387774f0d28a2e7d38b7d32b68d0c160e"
            },
            "downloads": -1,
            "filename": "meritrank_python-0.2.10.tar.gz",
            "has_sig": false,
            "md5_digest": "d3b7639597aa9256698ea21371261e09",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 15843,
            "upload_time": "2024-02-16T21:10:45",
            "upload_time_iso_8601": "2024-02-16T21:10:45.894062Z",
            "url": "https://files.pythonhosted.org/packages/c5/d1/28864959d48c78ea42f6894cbf7e9923250b156d8e7a4258ad261a44b4ae/meritrank_python-0.2.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-16 21:10:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ichorid",
    "github_project": "meritrank-python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "meritrank-python"
}
        
Elapsed time: 0.18097s