# Metabo_ADNI
[![PyPI version](https://badge.fury.io/py/metabo_adni.svg)](https://pypi.org/project/metabo-adni/)
Metabolomics data processing for the ADNI data sets.
Currently, only supports the Biocrates p180 and Nightingale NMR platforms.
## Installation
metabo_adni is distributed as a python package, so install it by running:
```bash
pip install metabo_adni
```
## Usage
In the folder with the required datasets, simply run:
```bash
clean_files
```
And metabo_adni will run with the default parameters.
**Note:** do not change the original name of the files.
### Options
- `-D`: define the directory were the files are located. Default, current working directory
- `-P`: define the platform, either p180 or nmr. Default, p180
- `-F`: define the fasting file. Default, BIOMARK.csv
- `-L`: define the directory were the LOD p180 files are located. Default, current working directory
- `--mmc`: remove metabolites with missing proportions greater than cutoff. Default, 0.2
- `--mpc`: remove participants with missing proportions greater than cutoff. Default, 0.2
- `--cv`: remove metabolites with CV values greater than cutoff. Default, 0.2
- `--icc`: remove metabolites with ICC values lower than cutoff. Default, 0.65
- `--log2`: apply log2 transformation to metabolite concentration values
- `--merge`: merge data frames across cohorts
- `--zscore`: apply zscore transformation to metabolite concentration values
- `--winsorize`: winsorize extreme values (more than 3 std of mean)
- `--remove-moutliers`: remove multivariate outliers using the Mahalanobis distance
- `--residualize-meds`: replace metabolite values with residuals from a regression with medication intake. Note that residuals are scaled to unit variance
Raw data
{
"_id": null,
"home_page": "https://github.com/tomszar/metabo_adni",
"name": "metabo_adni",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.12",
"maintainer_email": null,
"keywords": "metabolomics, quality control, adni, alzheimer's disease",
"author": "Tomas Gonzalez Zarzar",
"author_email": "tomasgzarzar@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/0c/af/80b1a33e96d98043dbf1fe8c983bacdf39adb0f91966ebc056a3be637a11/metabo_adni-0.5.8.tar.gz",
"platform": null,
"description": "# Metabo_ADNI\n[![PyPI version](https://badge.fury.io/py/metabo_adni.svg)](https://pypi.org/project/metabo-adni/)\n\nMetabolomics data processing for the ADNI data sets.\nCurrently, only supports the Biocrates p180 and Nightingale NMR platforms.\n\n## Installation\n\nmetabo_adni is distributed as a python package, so install it by running:\n\n```bash\npip install metabo_adni\n```\n\n## Usage\n\nIn the folder with the required datasets, simply run:\n\n```bash\nclean_files\n```\n\nAnd metabo_adni will run with the default parameters.\n**Note:** do not change the original name of the files.\n\n### Options\n\n- `-D`: define the directory were the files are located. Default, current working directory\n- `-P`: define the platform, either p180 or nmr. Default, p180\n- `-F`: define the fasting file. Default, BIOMARK.csv\n- `-L`: define the directory were the LOD p180 files are located. Default, current working directory\n- `--mmc`: remove metabolites with missing proportions greater than cutoff. Default, 0.2\n- `--mpc`: remove participants with missing proportions greater than cutoff. Default, 0.2\n- `--cv`: remove metabolites with CV values greater than cutoff. Default, 0.2\n- `--icc`: remove metabolites with ICC values lower than cutoff. Default, 0.65\n- `--log2`: apply log2 transformation to metabolite concentration values\n- `--merge`: merge data frames across cohorts\n- `--zscore`: apply zscore transformation to metabolite concentration values\n- `--winsorize`: winsorize extreme values (more than 3 std of mean)\n- `--remove-moutliers`: remove multivariate outliers using the Mahalanobis distance\n- `--residualize-meds`: replace metabolite values with residuals from a regression with medication intake. Note that residuals are scaled to unit variance\n",
"bugtrack_url": null,
"license": "GNU General Public License v3.0",
"summary": "Metabolomics data processing for the ADNI data sets.",
"version": "0.5.8",
"project_urls": {
"Homepage": "https://github.com/tomszar/metabo_adni",
"Repository": "https://github.com/tomszar/metabo_adni"
},
"split_keywords": [
"metabolomics",
" quality control",
" adni",
" alzheimer's disease"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "792bda3d1bde58b8c084b27c2489b9ef907c847e088beb69dd157c141640d6c0",
"md5": "7f389285cd2033315f44d6d6134a1aa0",
"sha256": "18652455fbfdb24724ec12f7098e2ef1ffade414fed2abbaa615acd6c05e5740"
},
"downloads": -1,
"filename": "metabo_adni-0.5.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7f389285cd2033315f44d6d6134a1aa0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.12",
"size": 25947,
"upload_time": "2024-09-04T20:37:53",
"upload_time_iso_8601": "2024-09-04T20:37:53.607572Z",
"url": "https://files.pythonhosted.org/packages/79/2b/da3d1bde58b8c084b27c2489b9ef907c847e088beb69dd157c141640d6c0/metabo_adni-0.5.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0caf80b1a33e96d98043dbf1fe8c983bacdf39adb0f91966ebc056a3be637a11",
"md5": "2cff3e91c154f8421f5a60b2deb9fd1a",
"sha256": "040386d37809488781dc076bae1684bf2c15bbe9f4d8d1bc8b8622ab2672d570"
},
"downloads": -1,
"filename": "metabo_adni-0.5.8.tar.gz",
"has_sig": false,
"md5_digest": "2cff3e91c154f8421f5a60b2deb9fd1a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.12",
"size": 23120,
"upload_time": "2024-09-04T20:37:54",
"upload_time_iso_8601": "2024-09-04T20:37:54.655004Z",
"url": "https://files.pythonhosted.org/packages/0c/af/80b1a33e96d98043dbf1fe8c983bacdf39adb0f91966ebc056a3be637a11/metabo_adni-0.5.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-04 20:37:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tomszar",
"github_project": "metabo_adni",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "metabo_adni"
}