metabo_adni


Namemetabo_adni JSON
Version 0.5.8 PyPI version JSON
download
home_pagehttps://github.com/tomszar/metabo_adni
SummaryMetabolomics data processing for the ADNI data sets.
upload_time2024-09-04 20:37:54
maintainerNone
docs_urlNone
authorTomas Gonzalez Zarzar
requires_python<4.0,>=3.12
licenseGNU General Public License v3.0
keywords metabolomics quality control adni alzheimer's disease
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Metabo_ADNI
[![PyPI version](https://badge.fury.io/py/metabo_adni.svg)](https://pypi.org/project/metabo-adni/)

Metabolomics data processing for the ADNI data sets.
Currently, only supports the Biocrates p180 and Nightingale NMR platforms.

## Installation

metabo_adni is distributed as a python package, so install it by running:

```bash
pip install metabo_adni
```

## Usage

In the folder with the required datasets, simply run:

```bash
clean_files
```

And metabo_adni will run with the default parameters.
**Note:** do not change the original name of the files.

### Options

- `-D`: define the directory were the files are located. Default, current working directory
- `-P`: define the platform, either p180 or nmr. Default, p180
- `-F`: define the fasting file. Default, BIOMARK.csv
- `-L`: define the directory were the LOD p180 files are located. Default, current working directory
- `--mmc`: remove metabolites with missing proportions greater than cutoff. Default, 0.2
- `--mpc`: remove participants with missing proportions greater than cutoff. Default, 0.2
- `--cv`: remove metabolites with CV values greater than cutoff. Default, 0.2
- `--icc`: remove metabolites with ICC values lower than cutoff. Default, 0.65
- `--log2`: apply log2 transformation to metabolite concentration values
- `--merge`: merge data frames across cohorts
- `--zscore`: apply zscore transformation to metabolite concentration values
- `--winsorize`: winsorize extreme values (more than 3 std of mean)
- `--remove-moutliers`: remove multivariate outliers using the Mahalanobis distance
- `--residualize-meds`: replace metabolite values with residuals from a regression with medication intake. Note that residuals are scaled to unit variance

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tomszar/metabo_adni",
    "name": "metabo_adni",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.12",
    "maintainer_email": null,
    "keywords": "metabolomics, quality control, adni, alzheimer's disease",
    "author": "Tomas Gonzalez Zarzar",
    "author_email": "tomasgzarzar@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/0c/af/80b1a33e96d98043dbf1fe8c983bacdf39adb0f91966ebc056a3be637a11/metabo_adni-0.5.8.tar.gz",
    "platform": null,
    "description": "# Metabo_ADNI\n[![PyPI version](https://badge.fury.io/py/metabo_adni.svg)](https://pypi.org/project/metabo-adni/)\n\nMetabolomics data processing for the ADNI data sets.\nCurrently, only supports the Biocrates p180 and Nightingale NMR platforms.\n\n## Installation\n\nmetabo_adni is distributed as a python package, so install it by running:\n\n```bash\npip install metabo_adni\n```\n\n## Usage\n\nIn the folder with the required datasets, simply run:\n\n```bash\nclean_files\n```\n\nAnd metabo_adni will run with the default parameters.\n**Note:** do not change the original name of the files.\n\n### Options\n\n- `-D`: define the directory were the files are located. Default, current working directory\n- `-P`: define the platform, either p180 or nmr. Default, p180\n- `-F`: define the fasting file. Default, BIOMARK.csv\n- `-L`: define the directory were the LOD p180 files are located. Default, current working directory\n- `--mmc`: remove metabolites with missing proportions greater than cutoff. Default, 0.2\n- `--mpc`: remove participants with missing proportions greater than cutoff. Default, 0.2\n- `--cv`: remove metabolites with CV values greater than cutoff. Default, 0.2\n- `--icc`: remove metabolites with ICC values lower than cutoff. Default, 0.65\n- `--log2`: apply log2 transformation to metabolite concentration values\n- `--merge`: merge data frames across cohorts\n- `--zscore`: apply zscore transformation to metabolite concentration values\n- `--winsorize`: winsorize extreme values (more than 3 std of mean)\n- `--remove-moutliers`: remove multivariate outliers using the Mahalanobis distance\n- `--residualize-meds`: replace metabolite values with residuals from a regression with medication intake. Note that residuals are scaled to unit variance\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3.0",
    "summary": "Metabolomics data processing for the ADNI data sets.",
    "version": "0.5.8",
    "project_urls": {
        "Homepage": "https://github.com/tomszar/metabo_adni",
        "Repository": "https://github.com/tomszar/metabo_adni"
    },
    "split_keywords": [
        "metabolomics",
        " quality control",
        " adni",
        " alzheimer's disease"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "792bda3d1bde58b8c084b27c2489b9ef907c847e088beb69dd157c141640d6c0",
                "md5": "7f389285cd2033315f44d6d6134a1aa0",
                "sha256": "18652455fbfdb24724ec12f7098e2ef1ffade414fed2abbaa615acd6c05e5740"
            },
            "downloads": -1,
            "filename": "metabo_adni-0.5.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7f389285cd2033315f44d6d6134a1aa0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.12",
            "size": 25947,
            "upload_time": "2024-09-04T20:37:53",
            "upload_time_iso_8601": "2024-09-04T20:37:53.607572Z",
            "url": "https://files.pythonhosted.org/packages/79/2b/da3d1bde58b8c084b27c2489b9ef907c847e088beb69dd157c141640d6c0/metabo_adni-0.5.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0caf80b1a33e96d98043dbf1fe8c983bacdf39adb0f91966ebc056a3be637a11",
                "md5": "2cff3e91c154f8421f5a60b2deb9fd1a",
                "sha256": "040386d37809488781dc076bae1684bf2c15bbe9f4d8d1bc8b8622ab2672d570"
            },
            "downloads": -1,
            "filename": "metabo_adni-0.5.8.tar.gz",
            "has_sig": false,
            "md5_digest": "2cff3e91c154f8421f5a60b2deb9fd1a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.12",
            "size": 23120,
            "upload_time": "2024-09-04T20:37:54",
            "upload_time_iso_8601": "2024-09-04T20:37:54.655004Z",
            "url": "https://files.pythonhosted.org/packages/0c/af/80b1a33e96d98043dbf1fe8c983bacdf39adb0f91966ebc056a3be637a11/metabo_adni-0.5.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-04 20:37:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tomszar",
    "github_project": "metabo_adni",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "metabo_adni"
}
        
Elapsed time: 0.29561s