# metaforecast
[![PyPi Version](https://img.shields.io/pypi/v/metaforecast)](https://pypi.org/project/metaforecast/)
[![Documentation Status](https://readthedocs.org/projects/metaforecast/badge/?version=latest)](https://metaforecast.readthedocs.io/en/latest/?badge=latest)
[![GitHub](https://img.shields.io/github/stars/vcerqueira/metaforecast?style=social)](https://github.com/vcerqueira/metaforecast)
![Pylint](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/vcerqueira/7ad63bc9902a43eb21993a755006f5de/raw/pylint-badge.json)
[![Downloads](https://static.pepy.tech/badge/metaforecast)](https://pepy.tech/project/metaforecast)
metaforecast is a Python package for time series forecasting using meta-learning and data-centric techniques.
This package implements various techniques to improve forecasting accuracy
based on dynamic model combination, data augmentation, and adaptive learning, building upon Nixtla’s awesome ecosystem of state-of-the-art forecasting methods.
## Features
metaforecast currently consists of three main modules:
1. **Dynamic Ensembles**: Combining multiple models with adaptive ensemble techniques.
2. **Synthetic Time Series Generation**: Creating realistic synthetic time series data for robust model training and testing.
Includes a special callback for online data augmentation.
3. **Long-Horizon Meta-Learning**: Instance-based meta-learning for multi-step forecasting.
## Installation
You can install metaforecast using pip:
```bash
pip install metaforecast
```
### [Optional] Installtion from source
To install metaforecast from source, clone the repository and run the following command:
```bash
git clone https://github.com/vcerqueira/metaforecast
pip install -e metaforecast
cd metaforecast
pre-commit install
```
## Documentation
Check the [documentation](https://metaforecast.readthedocs.io/en/latest/index.html) for
the API reference and module descriptions.
You can get started with a few [tutorials](https://metaforecast.readthedocs.io/en/latest/notebooks.html).
----
### **⚠️ WARNING**
> metaforecast is in the early stages of development.
> The codebase may undergo significant changes.
> If you encounter any issues, please report
> them in [GitHub Issues](https://github.com/vcerqueira/metaforecast/issues)
Raw data
{
"_id": null,
"home_page": null,
"name": "metaforecast",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "Data Science, Forecasting, Machine Learning, Time Series",
"author": null,
"author_email": "Vitor Cerqueira <cerqueira.vitormanuel@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/2f/4b/c727fca52c71f2c1fb7891d868c62beae09a55c65f7c17560b3a54c4ff36/metaforecast-0.1.7.tar.gz",
"platform": null,
"description": "# metaforecast\n\n[![PyPi Version](https://img.shields.io/pypi/v/metaforecast)](https://pypi.org/project/metaforecast/)\n[![Documentation Status](https://readthedocs.org/projects/metaforecast/badge/?version=latest)](https://metaforecast.readthedocs.io/en/latest/?badge=latest)\n[![GitHub](https://img.shields.io/github/stars/vcerqueira/metaforecast?style=social)](https://github.com/vcerqueira/metaforecast)\n![Pylint](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/vcerqueira/7ad63bc9902a43eb21993a755006f5de/raw/pylint-badge.json)\n[![Downloads](https://static.pepy.tech/badge/metaforecast)](https://pepy.tech/project/metaforecast)\n\n\nmetaforecast is a Python package for time series forecasting using meta-learning and data-centric techniques.\n\nThis package implements various techniques to improve forecasting accuracy \nbased on dynamic model combination, data augmentation, and adaptive learning, building upon Nixtla\u2019s awesome ecosystem of state-of-the-art forecasting methods.\n\n## Features\n\nmetaforecast currently consists of three main modules:\n\n1. **Dynamic Ensembles**: Combining multiple models with adaptive ensemble techniques.\n2. **Synthetic Time Series Generation**: Creating realistic synthetic time series data for robust model training and testing. \nIncludes a special callback for online data augmentation.\n3. **Long-Horizon Meta-Learning**: Instance-based meta-learning for multi-step forecasting.\n\n\n## Installation\n\nYou can install metaforecast using pip:\n\n```bash\npip install metaforecast\n```\n\n### [Optional] Installtion from source\n\nTo install metaforecast from source, clone the repository and run the following command:\n\n```bash\ngit clone https://github.com/vcerqueira/metaforecast\npip install -e metaforecast\ncd metaforecast\npre-commit install\n```\n\n## Documentation\n\nCheck the [documentation](https://metaforecast.readthedocs.io/en/latest/index.html) for \nthe API reference and module descriptions. \nYou can get started with a few [tutorials](https://metaforecast.readthedocs.io/en/latest/notebooks.html).\n\n----\n\n### **\u26a0\ufe0f WARNING**\n\n> metaforecast is in the early stages of development. \n> The codebase may undergo significant changes. \n> If you encounter any issues, please report\n> them in [GitHub Issues](https://github.com/vcerqueira/metaforecast/issues)\n",
"bugtrack_url": null,
"license": null,
"summary": "Meta-learning and Data-centric Forecasting",
"version": "0.1.7",
"project_urls": {
"Bug Tracker": "https://github.com/vcerqueira/metaforecast/issues",
"Homepage": "https://github.com/vcerqueira/metaforecast"
},
"split_keywords": [
"data science",
" forecasting",
" machine learning",
" time series"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ca2477be7d0077f25bd366cfc6c77dd7ab5c5aa90cc80cfc21f9177b2629d88e",
"md5": "080daaefe4db0236edeefa74a2ab0572",
"sha256": "1cdca44dc62029cf63784ca206f455d51ab289c0ed20df6caf77203bcaeff7aa"
},
"downloads": -1,
"filename": "metaforecast-0.1.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "080daaefe4db0236edeefa74a2ab0572",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 53050,
"upload_time": "2024-11-26T22:41:46",
"upload_time_iso_8601": "2024-11-26T22:41:46.683509Z",
"url": "https://files.pythonhosted.org/packages/ca/24/77be7d0077f25bd366cfc6c77dd7ab5c5aa90cc80cfc21f9177b2629d88e/metaforecast-0.1.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2f4bc727fca52c71f2c1fb7891d868c62beae09a55c65f7c17560b3a54c4ff36",
"md5": "60acc8a8f9892a0eace016cea0afa095",
"sha256": "b35a206e3d5171c59fd11d12fc6a430685f2afc4b07acefefe79a2576b7ba500"
},
"downloads": -1,
"filename": "metaforecast-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "60acc8a8f9892a0eace016cea0afa095",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 152671,
"upload_time": "2024-11-26T22:41:48",
"upload_time_iso_8601": "2024-11-26T22:41:48.790190Z",
"url": "https://files.pythonhosted.org/packages/2f/4b/c727fca52c71f2c1fb7891d868c62beae09a55c65f7c17560b3a54c4ff36/metaforecast-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-26 22:41:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vcerqueira",
"github_project": "metaforecast",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "metaforecast"
}