# metaheuristicpy
A Python-based package of Metaheuristic Optimization Algorithms for Solving Continous and Discrete Optimization Problem
<hr>
# Cite
If you think this package is useful, please cite this paper in your project: <br>
[1] Bimantara, I.M.S., Sanjaya ER, N., Purwitasari, D. (2023). Character Entity Recognition Using Hybrid Binary-Particle Swarm Optimization and Conditional Random Field on Balinese Folklore Text. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_15 <br>
[2] Bimantara, I. M. S., & Widiartha, I. M. (2023). Optimization of K-Means Clustering Using Particle Swarm Optimization Algorithm for Grouping Traveler Reviews Data on Tripadvisor Sites. Jurnal Ilmiah Kursor, 12(1), 1-10. <br>
[3] Supriana, I. W., Raharja, M. A., Bimantara, I. M. S., & Bramantya, D. (2021). Implementasi dua model crossover pada algoritma genetika untuk optimasi penggunaan ruang perkuliahan. Jurnal RESISTOR (Rekayasa Sistem Komputer), 4(2), 167-177. <br>
[4] BIMANTARA, I Made Satria et al. Implementasi Generalized Learning Vector Quantization (GLVQ) dan Particle Swarm Optimization (PSO) Untuk Klasifikasi Kanker Payudara. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), [S.l.], v. 10, n. 4, p. 307-318, may 2022. ISSN 2654-5101. Available at: <https://ojs.unud.ac.id/index.php/jlk/article/view/85746>. Date accessed: 31 may 2025. doi: https://doi.org/10.24843/JLK.2022.v10.i04.p01. <br>
# Contributors and Developer
- I Made Satria Bimantara
- email: satriabimantara.idm@gmail.com
Raw data
{
"_id": null,
"home_page": null,
"name": "metaheuristicpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "Optimization, Metaheuristic, Swarm Intelligence, Evolutionary Algorithm, Soft Computing",
"author": "I Made Satria Bimantara",
"author_email": "satriabimantara.imd@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/af/e7/23852e6a3ca68f4be2176df2a6481034868cc262f0e796ee0b8cb28e255f/metaheuristicpy-1.0.2.tar.gz",
"platform": null,
"description": "# metaheuristicpy\n\nA Python-based package of Metaheuristic Optimization Algorithms for Solving Continous and Discrete Optimization Problem\n\n<hr>\n\n# Cite\n\nIf you think this package is useful, please cite this paper in your project: <br>\n[1] Bimantara, I.M.S., Sanjaya ER, N., Purwitasari, D. (2023). Character Entity Recognition Using Hybrid Binary-Particle Swarm Optimization and Conditional Random Field on Balinese Folklore Text. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_15 <br>\n[2] Bimantara, I. M. S., & Widiartha, I. M. (2023). Optimization of K-Means Clustering Using Particle Swarm Optimization Algorithm for Grouping Traveler Reviews Data on Tripadvisor Sites. Jurnal Ilmiah Kursor, 12(1), 1-10. <br>\n[3] Supriana, I. W., Raharja, M. A., Bimantara, I. M. S., & Bramantya, D. (2021). Implementasi dua model crossover pada algoritma genetika untuk optimasi penggunaan ruang perkuliahan. Jurnal RESISTOR (Rekayasa Sistem Komputer), 4(2), 167-177. <br>\n[4] BIMANTARA, I Made Satria et al. Implementasi Generalized Learning Vector Quantization (GLVQ) dan Particle Swarm Optimization (PSO) Untuk Klasifikasi Kanker Payudara. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), [S.l.], v. 10, n. 4, p. 307-318, may 2022. ISSN 2654-5101. Available at: <https://ojs.unud.ac.id/index.php/jlk/article/view/85746>. Date accessed: 31 may 2025. doi: https://doi.org/10.24843/JLK.2022.v10.i04.p01. <br>\n\n# Contributors and Developer\n\n- I Made Satria Bimantara\n- email: satriabimantara.idm@gmail.com\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python-based package of Metaheuristic Optimization Algorithms for Solving Continous and Discrete Optimization Problem",
"version": "1.0.2",
"project_urls": null,
"split_keywords": [
"optimization",
" metaheuristic",
" swarm intelligence",
" evolutionary algorithm",
" soft computing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "936ec8010019bc2e57a759df42c3130cb3238b4cb3a82ee85f89f8a1db336f40",
"md5": "8f84484f3f9710ddeadbacf2239fe658",
"sha256": "664ca7553534b9c7fe5394e52346721c8fc7bbd26d2585ead45b1ab9601da1a7"
},
"downloads": -1,
"filename": "metaheuristicpy-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8f84484f3f9710ddeadbacf2239fe658",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 54023,
"upload_time": "2025-08-24T09:48:49",
"upload_time_iso_8601": "2025-08-24T09:48:49.882983Z",
"url": "https://files.pythonhosted.org/packages/93/6e/c8010019bc2e57a759df42c3130cb3238b4cb3a82ee85f89f8a1db336f40/metaheuristicpy-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "afe723852e6a3ca68f4be2176df2a6481034868cc262f0e796ee0b8cb28e255f",
"md5": "5a17ef5522b296de599d051ce5fda565",
"sha256": "be721bb1f051d2348c9605b917b773b0c7fecaf9c84ee66529fcc5b898d285ab"
},
"downloads": -1,
"filename": "metaheuristicpy-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "5a17ef5522b296de599d051ce5fda565",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 30690,
"upload_time": "2025-08-24T09:48:51",
"upload_time_iso_8601": "2025-08-24T09:48:51.477122Z",
"url": "https://files.pythonhosted.org/packages/af/e7/23852e6a3ca68f4be2176df2a6481034868cc262f0e796ee0b8cb28e255f/metaheuristicpy-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-24 09:48:51",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "metaheuristicpy"
}