metametric


Namemetametric JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://omnuy.me/metametric
SummaryA Unified View of Evaluation Metrics for Structured Prediction
upload_time2024-08-10 02:35:40
maintainerNone
docs_urlNone
authorTongfei Chen
requires_python>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # metametric

The `metametric` Python package offers a set of tools for quickly and easily defining and implementing evaluation metrics for a variety of structured prediction tasks in natural language processing (NLP) based on the framework presented in the following paper:

> [A Unified View of Evaluation Metrics for Structured Prediction](https://arxiv.org/abs/2310.13793). Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, and Benjamin Van Durme. *EMNLP 2023*.

The key features of the package include:

- A decorator for automatically defining and implementing a custom metric for an arbitrary `dataclass`.
- A collection of generic components for defining arbitrary new metrics based on the framework in the paper.
- Implementations of a number of metrics for common structured prediction tasks.


To install, run:
```bash
pip install metametric
```

If you use this codebase in your work, please cite the following paper:

```tex
@inproceedings{metametric,
    title={A Unified View of Evaluation Metrics for Structured Prediction},
    author={Yunmo Chen and William Gantt and Tongfei Chen and Aaron Steven White and Benjamin {Van Durme}},
    booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},
    year={2023},
    address={Singapore},
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://omnuy.me/metametric",
    "name": "metametric",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Tongfei Chen",
    "author_email": "tongfei@pm.me",
    "download_url": "https://files.pythonhosted.org/packages/d2/c4/e73703de44dadd15660e0f331b3b97c7098a880bdfe41df6d771deba805e/metametric-0.1.2.tar.gz",
    "platform": null,
    "description": "# metametric\n\nThe `metametric` Python package offers a set of tools for quickly and easily defining and implementing evaluation metrics for a variety of structured prediction tasks in natural language processing (NLP) based on the framework presented in the following paper:\n\n> [A Unified View of Evaluation Metrics for Structured Prediction](https://arxiv.org/abs/2310.13793). Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, and Benjamin Van Durme. *EMNLP 2023*.\n\nThe key features of the package include:\n\n- A decorator for automatically defining and implementing a custom metric for an arbitrary `dataclass`.\n- A collection of generic components for defining arbitrary new metrics based on the framework in the paper.\n- Implementations of a number of metrics for common structured prediction tasks.\n\n\nTo install, run:\n```bash\npip install metametric\n```\n\nIf you use this codebase in your work, please cite the following paper:\n\n```tex\n@inproceedings{metametric,\n    title={A Unified View of Evaluation Metrics for Structured Prediction},\n    author={Yunmo Chen and William Gantt and Tongfei Chen and Aaron Steven White and Benjamin {Van Durme}},\n    booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},\n    year={2023},\n    address={Singapore},\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Unified View of Evaluation Metrics for Structured Prediction",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://omnuy.me/metametric",
        "Repository": "https://github.com/wanmok/metametric"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ef5c04eac613533529e3c71b8857fc9b14a12d2496f1294427ab6b2dd6e3dbfd",
                "md5": "3b37b655a41c5afe1ec2062156ccfdba",
                "sha256": "16529e89bef1633dbdbe9f9ca0bdd38adfab56bbf7d137aa0b3e79e53f5745f7"
            },
            "downloads": -1,
            "filename": "metametric-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b37b655a41c5afe1ec2062156ccfdba",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 21221,
            "upload_time": "2024-08-10T02:35:39",
            "upload_time_iso_8601": "2024-08-10T02:35:39.500566Z",
            "url": "https://files.pythonhosted.org/packages/ef/5c/04eac613533529e3c71b8857fc9b14a12d2496f1294427ab6b2dd6e3dbfd/metametric-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d2c4e73703de44dadd15660e0f331b3b97c7098a880bdfe41df6d771deba805e",
                "md5": "43595272777cfe129f636260e1c3d22e",
                "sha256": "39dbb3c70062f994bdbc6a59fc1e0f2fcc8e265ff666f96c65315876a5a8e77f"
            },
            "downloads": -1,
            "filename": "metametric-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "43595272777cfe129f636260e1c3d22e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 15906,
            "upload_time": "2024-08-10T02:35:40",
            "upload_time_iso_8601": "2024-08-10T02:35:40.882468Z",
            "url": "https://files.pythonhosted.org/packages/d2/c4/e73703de44dadd15660e0f331b3b97c7098a880bdfe41df6d771deba805e/metametric-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-10 02:35:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "wanmok",
    "github_project": "metametric",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "metametric"
}
        
Elapsed time: 0.26883s