Name | metametric JSON |
Version |
0.1.2
JSON |
| download |
home_page | https://omnuy.me/metametric |
Summary | A Unified View of Evaluation Metrics for Structured Prediction |
upload_time | 2024-08-10 02:35:40 |
maintainer | None |
docs_url | None |
author | Tongfei Chen |
requires_python | >=3.9 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# metametric
The `metametric` Python package offers a set of tools for quickly and easily defining and implementing evaluation metrics for a variety of structured prediction tasks in natural language processing (NLP) based on the framework presented in the following paper:
> [A Unified View of Evaluation Metrics for Structured Prediction](https://arxiv.org/abs/2310.13793). Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, and Benjamin Van Durme. *EMNLP 2023*.
The key features of the package include:
- A decorator for automatically defining and implementing a custom metric for an arbitrary `dataclass`.
- A collection of generic components for defining arbitrary new metrics based on the framework in the paper.
- Implementations of a number of metrics for common structured prediction tasks.
To install, run:
```bash
pip install metametric
```
If you use this codebase in your work, please cite the following paper:
```tex
@inproceedings{metametric,
title={A Unified View of Evaluation Metrics for Structured Prediction},
author={Yunmo Chen and William Gantt and Tongfei Chen and Aaron Steven White and Benjamin {Van Durme}},
booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},
year={2023},
address={Singapore},
}
```
Raw data
{
"_id": null,
"home_page": "https://omnuy.me/metametric",
"name": "metametric",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Tongfei Chen",
"author_email": "tongfei@pm.me",
"download_url": "https://files.pythonhosted.org/packages/d2/c4/e73703de44dadd15660e0f331b3b97c7098a880bdfe41df6d771deba805e/metametric-0.1.2.tar.gz",
"platform": null,
"description": "# metametric\n\nThe `metametric` Python package offers a set of tools for quickly and easily defining and implementing evaluation metrics for a variety of structured prediction tasks in natural language processing (NLP) based on the framework presented in the following paper:\n\n> [A Unified View of Evaluation Metrics for Structured Prediction](https://arxiv.org/abs/2310.13793). Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, and Benjamin Van Durme. *EMNLP 2023*.\n\nThe key features of the package include:\n\n- A decorator for automatically defining and implementing a custom metric for an arbitrary `dataclass`.\n- A collection of generic components for defining arbitrary new metrics based on the framework in the paper.\n- Implementations of a number of metrics for common structured prediction tasks.\n\n\nTo install, run:\n```bash\npip install metametric\n```\n\nIf you use this codebase in your work, please cite the following paper:\n\n```tex\n@inproceedings{metametric,\n title={A Unified View of Evaluation Metrics for Structured Prediction},\n author={Yunmo Chen and William Gantt and Tongfei Chen and Aaron Steven White and Benjamin {Van Durme}},\n booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},\n year={2023},\n address={Singapore},\n}\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "A Unified View of Evaluation Metrics for Structured Prediction",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://omnuy.me/metametric",
"Repository": "https://github.com/wanmok/metametric"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ef5c04eac613533529e3c71b8857fc9b14a12d2496f1294427ab6b2dd6e3dbfd",
"md5": "3b37b655a41c5afe1ec2062156ccfdba",
"sha256": "16529e89bef1633dbdbe9f9ca0bdd38adfab56bbf7d137aa0b3e79e53f5745f7"
},
"downloads": -1,
"filename": "metametric-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3b37b655a41c5afe1ec2062156ccfdba",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 21221,
"upload_time": "2024-08-10T02:35:39",
"upload_time_iso_8601": "2024-08-10T02:35:39.500566Z",
"url": "https://files.pythonhosted.org/packages/ef/5c/04eac613533529e3c71b8857fc9b14a12d2496f1294427ab6b2dd6e3dbfd/metametric-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d2c4e73703de44dadd15660e0f331b3b97c7098a880bdfe41df6d771deba805e",
"md5": "43595272777cfe129f636260e1c3d22e",
"sha256": "39dbb3c70062f994bdbc6a59fc1e0f2fcc8e265ff666f96c65315876a5a8e77f"
},
"downloads": -1,
"filename": "metametric-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "43595272777cfe129f636260e1c3d22e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 15906,
"upload_time": "2024-08-10T02:35:40",
"upload_time_iso_8601": "2024-08-10T02:35:40.882468Z",
"url": "https://files.pythonhosted.org/packages/d2/c4/e73703de44dadd15660e0f331b3b97c7098a880bdfe41df6d771deba805e/metametric-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-10 02:35:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "wanmok",
"github_project": "metametric",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "metametric"
}