metametric


Namemetametric JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryA Unified View of Evaluation Metrics for Structured Prediction
upload_time2024-11-05 04:53:43
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # metametric

The `metametric` Python package offers a set of tools for quickly and easily defining and implementing evaluation metrics for a variety of structured prediction tasks in natural language processing (NLP) based on the framework presented in the following paper:

> [A Unified View of Evaluation Metrics for Structured Prediction](https://arxiv.org/abs/2310.13793). Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, and Benjamin Van Durme. *EMNLP 2023*.

The key features of the package include:

- A decorator for automatically defining and implementing a custom metric for an arbitrary `dataclass`.
- A collection of generic components for defining arbitrary new metrics based on the framework in the paper.
- Implementations of a number of metrics for common structured prediction tasks.


To install, run:
```bash
pip install metametric
```

If you use this codebase in your work, please cite the following paper:

```tex
@inproceedings{metametric,
    title={A Unified View of Evaluation Metrics for Structured Prediction},
    author={Yunmo Chen and William Gantt and Tongfei Chen and Aaron Steven White and Benjamin {Van Durme}},
    booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},
    year={2023},
    address={Singapore},
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "metametric",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Tongfei Chen <tongfei@pm.me>, Yunmo Chen <chanwanmok@gmail.com>, Will Gantt <wgantt.iv@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ed/7d/54af7e1c4fca7bbfe50ea07c78d0c1f8e1d14dbd5c004f8ce0b17ad8dfda/metametric-0.2.1.tar.gz",
    "platform": null,
    "description": "# metametric\n\nThe `metametric` Python package offers a set of tools for quickly and easily defining and implementing evaluation metrics for a variety of structured prediction tasks in natural language processing (NLP) based on the framework presented in the following paper:\n\n> [A Unified View of Evaluation Metrics for Structured Prediction](https://arxiv.org/abs/2310.13793). Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, and Benjamin Van Durme. *EMNLP 2023*.\n\nThe key features of the package include:\n\n- A decorator for automatically defining and implementing a custom metric for an arbitrary `dataclass`.\n- A collection of generic components for defining arbitrary new metrics based on the framework in the paper.\n- Implementations of a number of metrics for common structured prediction tasks.\n\n\nTo install, run:\n```bash\npip install metametric\n```\n\nIf you use this codebase in your work, please cite the following paper:\n\n```tex\n@inproceedings{metametric,\n    title={A Unified View of Evaluation Metrics for Structured Prediction},\n    author={Yunmo Chen and William Gantt and Tongfei Chen and Aaron Steven White and Benjamin {Van Durme}},\n    booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},\n    year={2023},\n    address={Singapore},\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Unified View of Evaluation Metrics for Structured Prediction",
    "version": "0.2.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c5bdcb5ac3313aaa82cb6bcc6cdc0416df744559c45b3bc1639a140d395ee9b9",
                "md5": "ea0d11bd83fbe4c0358d368c659c72d5",
                "sha256": "26c41dd3b3d6bf17000c60b40e7e3eb340092f34e5327a913c493e6ab69611da"
            },
            "downloads": -1,
            "filename": "metametric-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ea0d11bd83fbe4c0358d368c659c72d5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 25302,
            "upload_time": "2024-11-05T04:53:42",
            "upload_time_iso_8601": "2024-11-05T04:53:42.732300Z",
            "url": "https://files.pythonhosted.org/packages/c5/bd/cb5ac3313aaa82cb6bcc6cdc0416df744559c45b3bc1639a140d395ee9b9/metametric-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ed7d54af7e1c4fca7bbfe50ea07c78d0c1f8e1d14dbd5c004f8ce0b17ad8dfda",
                "md5": "da000a744490b5ac24f944c5d0000d7c",
                "sha256": "76df201ae0e215c5ffbfe4f37bab5bfd9ac0e2b900e6bce4cd4183372c4a17fc"
            },
            "downloads": -1,
            "filename": "metametric-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "da000a744490b5ac24f944c5d0000d7c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 18675,
            "upload_time": "2024-11-05T04:53:43",
            "upload_time_iso_8601": "2024-11-05T04:53:43.944836Z",
            "url": "https://files.pythonhosted.org/packages/ed/7d/54af7e1c4fca7bbfe50ea07c78d0c1f8e1d14dbd5c004f8ce0b17ad8dfda/metametric-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-05 04:53:43",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "metametric"
}
        
Elapsed time: 3.38210s