# metarank
> A Python client for [metarank](https://www.metarank.ai/).
## Usage
```bash
pip install metarank
```
## Example
```python
from metarank import Client
from metarank.schemas import FeedbackSchema, FieldSchema
base_url = "http://localhost:8080"
client = Client(base_url)
is_healthy = client.health_check() # True
events = [
FeedbackSchema(
event="item",
id="event:1",
timestamp="1985-07-03T14:31:43+13:00",
item="item:1",
fields=[
FieldSchema(
name="color",
value="red"
)
]
)
]
```
## Release
We use [python-semantic-release](https://python-semantic-release.readthedocs.io/en/latest/)
to automatically release the package to pypi.
## License
[MIT](./LICENSE)
Raw data
{
"_id": null,
"home_page": null,
"name": "metarank",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.12",
"maintainer_email": null,
"keywords": "Recommender Systems, Metarank, ML",
"author": "Hannes Moser",
"author_email": "box@hannesmoser.at",
"download_url": "https://files.pythonhosted.org/packages/50/79/d6079d2b4d91f4762a9b9cabe3ca9e91dd00ff3a78c1aaf2ec4e9bd7e109/metarank-1.1.0.tar.gz",
"platform": null,
"description": "# metarank\n\n> A Python client for [metarank](https://www.metarank.ai/).\n\n## Usage\n\n```bash\npip install metarank\n```\n\n## Example\n\n```python\nfrom metarank import Client\nfrom metarank.schemas import FeedbackSchema, FieldSchema\n\nbase_url = \"http://localhost:8080\"\n \nclient = Client(base_url)\nis_healthy = client.health_check() # True\n\nevents = [\n FeedbackSchema(\n event=\"item\",\n id=\"event:1\",\n timestamp=\"1985-07-03T14:31:43+13:00\",\n item=\"item:1\",\n fields=[\n FieldSchema(\n name=\"color\",\n value=\"red\"\n )\n ]\n )\n]\n```\n\n## Release\n\nWe use [python-semantic-release](https://python-semantic-release.readthedocs.io/en/latest/)\nto automatically release the package to pypi.\n\n## License\n\n[MIT](./LICENSE)\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python client for metarank",
"version": "1.1.0",
"project_urls": null,
"split_keywords": [
"recommender systems",
" metarank",
" ml"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "277f104a1260d8a161f815f3cb80cd78142f897009ef57cf355af103b2a39fbb",
"md5": "bb9b278f228de237ea321ff9e6e33973",
"sha256": "abe142446520f5fb24f0076a038c014418941e35b07c6936f3ad0ad840939083"
},
"downloads": -1,
"filename": "metarank-1.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bb9b278f228de237ea321ff9e6e33973",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.12",
"size": 4498,
"upload_time": "2024-09-12T12:33:43",
"upload_time_iso_8601": "2024-09-12T12:33:43.533949Z",
"url": "https://files.pythonhosted.org/packages/27/7f/104a1260d8a161f815f3cb80cd78142f897009ef57cf355af103b2a39fbb/metarank-1.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5079d6079d2b4d91f4762a9b9cabe3ca9e91dd00ff3a78c1aaf2ec4e9bd7e109",
"md5": "95e9936e5f556f15b19d4199984b1419",
"sha256": "7bea4e8e41f1b10c804315c7cc4439b109268ad8bfd652dd2276d8e48ecf14b2"
},
"downloads": -1,
"filename": "metarank-1.1.0.tar.gz",
"has_sig": false,
"md5_digest": "95e9936e5f556f15b19d4199984b1419",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.12",
"size": 4407,
"upload_time": "2024-09-12T12:33:44",
"upload_time_iso_8601": "2024-09-12T12:33:44.350737Z",
"url": "https://files.pythonhosted.org/packages/50/79/d6079d2b4d91f4762a9b9cabe3ca9e91dd00ff3a78c1aaf2ec4e9bd7e109/metarank-1.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-12 12:33:44",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "metarank"
}