metasam


Namemetasam JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/kadirnar/metasam
SummaryMetasam A Python package for Inference SAM
upload_time2024-08-07 15:21:18
maintainerNone
docs_urlNone
authorkadirnar
requires_pythonNone
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h2>
    MetaSam: Packaged version of the Segment Anything 2 Model
</h2>
<div>
    <img width="500" alt="teaser" src="doc/assets/logo.png">
</div>
<div>
    <a href="https://pypi.org/project/metasam" target="_blank">
        <img src="https://img.shields.io/pypi/pyversions/metasam.svg?color=%2334D058" alt="Supported Python versions">
    </a>
    <a href="https://badge.fury.io/py/metasam"><img src="https://badge.fury.io/py/metasam.svg" alt="pypi version"></a>
</div>
</div>

## 🛠️ Installation

```bash
pip install metasam
```

## 🤗 Model Hub

```bash
bash script/download_model.sh
```

## ⭐ Usage

```python
from metasam import SAM2Wrapper

# Initialize SAM2Wrapper
sam = SAM2Wrapper("path/to/checkpoint", "path/to/config")

# Load an image
sam.set_image("path/to/your/image.jpg")

# Predict segmentation
masks, scores, logits = sam.predict(point_coords=[[500, 640]], point_labels=[1])

# Visualize results
sam.show_masks(masks, scores)
```

## 😍 Contributing

```bash
pip install pre-commit
pre-commit install
pre-commit run --all-files
```

## 📜 License

This project is licensed under the terms of the Apache License 2.0.

## 🤗 Citation

```bibtex
@article{ravi2024sam2,
  title={SAM 2: Segment Anything in Images and Videos},
  author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph},
  journal={arXiv preprint arXiv:2408.00714},
  url={https://arxiv.org/abs/2408.00714},
  year={2024}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kadirnar/metasam",
    "name": "metasam",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "kadirnar",
    "author_email": "kadir.nar@hotmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a2/62/c5878d8396a5e41cabfa1a863f865249af4b7e5dc245f59488e7b90498ae/metasam-0.0.3.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h2>\n    MetaSam: Packaged version of the Segment Anything 2 Model\n</h2>\n<div>\n    <img width=\"500\" alt=\"teaser\" src=\"doc/assets/logo.png\">\n</div>\n<div>\n    <a href=\"https://pypi.org/project/metasam\" target=\"_blank\">\n        <img src=\"https://img.shields.io/pypi/pyversions/metasam.svg?color=%2334D058\" alt=\"Supported Python versions\">\n    </a>\n    <a href=\"https://badge.fury.io/py/metasam\"><img src=\"https://badge.fury.io/py/metasam.svg\" alt=\"pypi version\"></a>\n</div>\n</div>\n\n## \ud83d\udee0\ufe0f Installation\n\n```bash\npip install metasam\n```\n\n## \ud83e\udd17 Model Hub\n\n```bash\nbash script/download_model.sh\n```\n\n## \u2b50 Usage\n\n```python\nfrom metasam import SAM2Wrapper\n\n# Initialize SAM2Wrapper\nsam = SAM2Wrapper(\"path/to/checkpoint\", \"path/to/config\")\n\n# Load an image\nsam.set_image(\"path/to/your/image.jpg\")\n\n# Predict segmentation\nmasks, scores, logits = sam.predict(point_coords=[[500, 640]], point_labels=[1])\n\n# Visualize results\nsam.show_masks(masks, scores)\n```\n\n## \ud83d\ude0d Contributing\n\n```bash\npip install pre-commit\npre-commit install\npre-commit run --all-files\n```\n\n## \ud83d\udcdc License\n\nThis project is licensed under the terms of the Apache License 2.0.\n\n## \ud83e\udd17 Citation\n\n```bibtex\n@article{ravi2024sam2,\n  title={SAM 2: Segment Anything in Images and Videos},\n  author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\\\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\\'a}r, Piotr and Feichtenhofer, Christoph},\n  journal={arXiv preprint arXiv:2408.00714},\n  url={https://arxiv.org/abs/2408.00714},\n  year={2024}\n}\n```\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Metasam A Python package for Inference SAM",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/kadirnar/metasam"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a262c5878d8396a5e41cabfa1a863f865249af4b7e5dc245f59488e7b90498ae",
                "md5": "e1ad10311aa3639c238d2673f572fae1",
                "sha256": "2c91e985158fdf40439266c46579671545114b5243388c526bc4e08c2d874616"
            },
            "downloads": -1,
            "filename": "metasam-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "e1ad10311aa3639c238d2673f572fae1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 64919,
            "upload_time": "2024-08-07T15:21:18",
            "upload_time_iso_8601": "2024-08-07T15:21:18.086637Z",
            "url": "https://files.pythonhosted.org/packages/a2/62/c5878d8396a5e41cabfa1a863f865249af4b7e5dc245f59488e7b90498ae/metasam-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-07 15:21:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kadirnar",
    "github_project": "metasam",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "metasam"
}
        
Elapsed time: 0.66072s