metatensor


Namemetatensor JSON
Version 0.2.0 PyPI version JSON
download
home_page
SummarySelf-describing sparse tensor data format for atomistic machine learning and beyond
upload_time2024-01-26 17:27:15
maintainer
docs_urlNone
authorGuillaume Fraux, Davide Tisi, Philip Loche, Joseph W. Abbott, Jigyasa Nigam, Chiheb Ben Mahmoud
requires_python>=3.8
licenseBSD-3-Clause
keywords machine learning molecular modeling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Metatensor

[![tests status](https://img.shields.io/github/checks-status/lab-cosmo/metatensor/master)](https://github.com/lab-cosmo/metatensor/actions?query=branch%3Amaster)
[![documentation](https://img.shields.io/badge/documentation-latest-sucess)](https://lab-cosmo.github.io/metatensor/latest/)
[![coverage](https://codecov.io/gh/lab-cosmo/metatensor/branch/master/graph/badge.svg)]( https://codecov.io/gh/lab-cosmo/metatensor)

Metatensor is a self-describing sparse tensor data format for atomistic machine
learning and beyond; storing values and gradients of these values together.
Think numpy `ndarray` or pytorch `Tensor` equipped with extra metadata for
atomic systems and other point clouds data. The core of this library is written
in Rust and we provide API for C, C++, and Python.

The main class of metatensor is the `TensorMap` data structure, defining a
custom block-sparse data format. If you are using metatensor from Python, we
additionally provide a collection of mathematical, logical and other utility
operations to make working with TensorMaps more convenient.

## Documentation

For details, tutorials, and examples, please have a look at our [documentation](https://lab-cosmo.github.io/metatensor/latest/).

## Contributors

Thanks goes to all people that make metatensor possible:

[![contributors list](https://contrib.rocks/image?repo=lab-cosmo/metatensor)](https://github.com/lab-cosmo/metatensor/graphs/contributors)

We always welcome new contributors. If you want to help us take a look at our
[contribution guidelines](CONTRIBUTING.rst) and afterwards you may start with an
open issue marked as [good first
issue](https://github.com/lab-cosmo/metatensor/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "metatensor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "machine learning,molecular modeling",
    "author": "Guillaume Fraux, Davide Tisi, Philip Loche, Joseph W. Abbott, Jigyasa Nigam, Chiheb Ben Mahmoud",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/3e/58/172e96ccdca4d8d572579adc69b593dad79b74497c116ed86979257a5cbd/metatensor-0.2.0.tar.gz",
    "platform": null,
    "description": "# Metatensor\n\n[![tests status](https://img.shields.io/github/checks-status/lab-cosmo/metatensor/master)](https://github.com/lab-cosmo/metatensor/actions?query=branch%3Amaster)\n[![documentation](https://img.shields.io/badge/documentation-latest-sucess)](https://lab-cosmo.github.io/metatensor/latest/)\n[![coverage](https://codecov.io/gh/lab-cosmo/metatensor/branch/master/graph/badge.svg)]( https://codecov.io/gh/lab-cosmo/metatensor)\n\nMetatensor is a self-describing sparse tensor data format for atomistic machine\nlearning and beyond; storing values and gradients of these values together.\nThink numpy `ndarray` or pytorch `Tensor` equipped with extra metadata for\natomic systems and other point clouds data. The core of this library is written\nin Rust and we provide API for C, C++, and Python.\n\nThe main class of metatensor is the `TensorMap` data structure, defining a\ncustom block-sparse data format. If you are using metatensor from Python, we\nadditionally provide a collection of mathematical, logical and other utility\noperations to make working with TensorMaps more convenient.\n\n## Documentation\n\nFor details, tutorials, and examples, please have a look at our [documentation](https://lab-cosmo.github.io/metatensor/latest/).\n\n## Contributors\n\nThanks goes to all people that make metatensor possible:\n\n[![contributors list](https://contrib.rocks/image?repo=lab-cosmo/metatensor)](https://github.com/lab-cosmo/metatensor/graphs/contributors)\n\nWe always welcome new contributors. If you want to help us take a look at our\n[contribution guidelines](CONTRIBUTING.rst) and afterwards you may start with an\nopen issue marked as [good first\nissue](https://github.com/lab-cosmo/metatensor/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22).\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Self-describing sparse tensor data format for atomistic machine learning and beyond",
    "version": "0.2.0",
    "project_urls": {
        "changelog": "https://lab-cosmo.github.io/metatensor/latest/core/CHANGELOG.html",
        "documentation": "https://lab-cosmo.github.io/metatensor/latest/",
        "homepage": "https://lab-cosmo.github.io/metatensor/latest/",
        "repository": "https://github.com/lab-cosmo/metatensor"
    },
    "split_keywords": [
        "machine learning",
        "molecular modeling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f728fd3f02ccb23764af794e953262127a7f2aed35073f460da6f279fe1c2b15",
                "md5": "35f6b77f120b503502984edc4b366fc4",
                "sha256": "60008fee73f49b349350d9d93dec63ea4e1cf30beceae17d543561d69a7ac393"
            },
            "downloads": -1,
            "filename": "metatensor-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "35f6b77f120b503502984edc4b366fc4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3702,
            "upload_time": "2024-01-26T17:26:59",
            "upload_time_iso_8601": "2024-01-26T17:26:59.518763Z",
            "url": "https://files.pythonhosted.org/packages/f7/28/fd3f02ccb23764af794e953262127a7f2aed35073f460da6f279fe1c2b15/metatensor-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3e58172e96ccdca4d8d572579adc69b593dad79b74497c116ed86979257a5cbd",
                "md5": "b010f9637fa8b1246932138d991a7ee0",
                "sha256": "ce3f8a34796d2aaa7e74b2d1392f64a05e85d1ca3e3878c1e9259e6a6a7a8138"
            },
            "downloads": -1,
            "filename": "metatensor-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b010f9637fa8b1246932138d991a7ee0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 5373,
            "upload_time": "2024-01-26T17:27:15",
            "upload_time_iso_8601": "2024-01-26T17:27:15.203138Z",
            "url": "https://files.pythonhosted.org/packages/3e/58/172e96ccdca4d8d572579adc69b593dad79b74497c116ed86979257a5cbd/metatensor-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-26 17:27:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lab-cosmo",
    "github_project": "metatensor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "metatensor"
}
        
Elapsed time: 0.33955s