metric-learn


Namemetric-learn JSON
Version 0.7.0 PyPI version JSON
download
home_pagehttp://github.com/scikit-learn-contrib/metric-learn
SummaryPython implementations of metric learning algorithms
upload_time2023-10-09 04:54:02
maintainer
docs_urlNone
author['CJ Carey', 'Yuan Tang', 'William de Vazelhes', 'Aurélien Bellet', 'Nathalie Vauquier']
requires_python>=3.6
licenseMIT
keywords metric learning large margin nearest neighbor information theoretic metric learning sparse determinant metric learning least squares metric learning neighborhood components analysis local fisher discriminant analysis relative components analysis mahalanobis metric for clustering metric learning for kernel regression
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            |GitHub Actions Build Status| |License| |PyPI version| |Code coverage|

metric-learn: Metric Learning in Python
=======================================

metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.

**Algorithms**

-  Large Margin Nearest Neighbor (LMNN)
-  Information Theoretic Metric Learning (ITML)
-  Sparse Determinant Metric Learning (SDML)
-  Least Squares Metric Learning (LSML)
-  Sparse Compositional Metric Learning (SCML)
-  Neighborhood Components Analysis (NCA)
-  Local Fisher Discriminant Analysis (LFDA)
-  Relative Components Analysis (RCA)
-  Metric Learning for Kernel Regression (MLKR)
-  Mahalanobis Metric for Clustering (MMC)

**Dependencies**

-  Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
   `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
-  numpy>= 1.11.0, scipy>= 0.17.0, scikit-learn>=0.21.3

**Optional dependencies**

- For SDML, using skggm will allow the algorithm to solve problematic cases
  (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
  ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
-  For running the examples only: matplotlib

**Installation/Setup**

- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.

- To install from PyPI: ``pip install metric-learn``.

- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).

**Usage**

See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.

**Citation**

If you use metric-learn in a scientific publication, we would appreciate
citations to the following paper:

`metric-learn: Metric Learning Algorithms in Python
<http://www.jmlr.org/papers/volume21/19-678/19-678.pdf>`_, de Vazelhes
*et al.*, Journal of Machine Learning Research, 21(138):1-6, 2020.

Bibtex entry::

  @article{metric-learn,
    title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
    author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
              {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
    journal = {Journal of Machine Learning Research},
    year = {2020},
    volume = {21},
    number = {138},
    pages = {1--6}
  }

.. _sphinx documentation: http://contrib.scikit-learn.org/metric-learn/

.. |GitHub Actions Build Status| image:: https://github.com/scikit-learn-contrib/metric-learn/workflows/CI/badge.svg
   :target: https://github.com/scikit-learn-contrib/metric-learn/actions?query=event%3Apush+branch%3Amaster
.. |License| image:: http://img.shields.io/:license-mit-blue.svg?style=flat
   :target: http://badges.mit-license.org
.. |PyPI version| image:: https://badge.fury.io/py/metric-learn.svg
   :target: http://badge.fury.io/py/metric-learn
.. |Code coverage| image:: https://codecov.io/gh/scikit-learn-contrib/metric-learn/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/scikit-learn-contrib/metric-learn

            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/scikit-learn-contrib/metric-learn",
    "name": "metric-learn",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "Metric Learning,Large Margin Nearest Neighbor,Information Theoretic Metric Learning,Sparse Determinant Metric Learning,Least Squares Metric Learning,Neighborhood Components Analysis,Local Fisher Discriminant Analysis,Relative Components Analysis,Mahalanobis Metric for Clustering,Metric Learning for Kernel Regression",
    "author": "['CJ Carey', 'Yuan Tang', 'William de Vazelhes', 'Aur\u00e9lien Bellet', 'Nathalie Vauquier']",
    "author_email": "ccarey@cs.umass.edu",
    "download_url": "https://files.pythonhosted.org/packages/a8/36/8efc352a16dcb1e6058b90776e21f91f8631104a0e0229d5151f4d95695d/metric-learn-0.7.0.tar.gz",
    "platform": null,
    "description": "|GitHub Actions Build Status| |License| |PyPI version| |Code coverage|\n\nmetric-learn: Metric Learning in Python\n=======================================\n\nmetric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.\n\n**Algorithms**\n\n-  Large Margin Nearest Neighbor (LMNN)\n-  Information Theoretic Metric Learning (ITML)\n-  Sparse Determinant Metric Learning (SDML)\n-  Least Squares Metric Learning (LSML)\n-  Sparse Compositional Metric Learning (SCML)\n-  Neighborhood Components Analysis (NCA)\n-  Local Fisher Discriminant Analysis (LFDA)\n-  Relative Components Analysis (RCA)\n-  Metric Learning for Kernel Regression (MLKR)\n-  Mahalanobis Metric for Clustering (MMC)\n\n**Dependencies**\n\n-  Python 3.6+ (the last version supporting Python 2 and Python 3.5 was\n   `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)\n-  numpy>= 1.11.0, scipy>= 0.17.0, scikit-learn>=0.21.3\n\n**Optional dependencies**\n\n- For SDML, using skggm will allow the algorithm to solve problematic cases\n  (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).\n  ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.\n-  For running the examples only: matplotlib\n\n**Installation/Setup**\n\n- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.\n\n- To install from PyPI: ``pip install metric-learn``.\n\n- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).\n\n**Usage**\n\nSee the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.\n\n**Citation**\n\nIf you use metric-learn in a scientific publication, we would appreciate\ncitations to the following paper:\n\n`metric-learn: Metric Learning Algorithms in Python\n<http://www.jmlr.org/papers/volume21/19-678/19-678.pdf>`_, de Vazelhes\n*et al.*, Journal of Machine Learning Research, 21(138):1-6, 2020.\n\nBibtex entry::\n\n  @article{metric-learn,\n    title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},\n    author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and\n              {Vauquier}, Nathalie and {Bellet}, Aur{\\'e}lien},\n    journal = {Journal of Machine Learning Research},\n    year = {2020},\n    volume = {21},\n    number = {138},\n    pages = {1--6}\n  }\n\n.. _sphinx documentation: http://contrib.scikit-learn.org/metric-learn/\n\n.. |GitHub Actions Build Status| image:: https://github.com/scikit-learn-contrib/metric-learn/workflows/CI/badge.svg\n   :target: https://github.com/scikit-learn-contrib/metric-learn/actions?query=event%3Apush+branch%3Amaster\n.. |License| image:: http://img.shields.io/:license-mit-blue.svg?style=flat\n   :target: http://badges.mit-license.org\n.. |PyPI version| image:: https://badge.fury.io/py/metric-learn.svg\n   :target: http://badge.fury.io/py/metric-learn\n.. |Code coverage| image:: https://codecov.io/gh/scikit-learn-contrib/metric-learn/branch/master/graph/badge.svg\n   :target: https://codecov.io/gh/scikit-learn-contrib/metric-learn\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python implementations of metric learning algorithms",
    "version": "0.7.0",
    "project_urls": {
        "Homepage": "http://github.com/scikit-learn-contrib/metric-learn"
    },
    "split_keywords": [
        "metric learning",
        "large margin nearest neighbor",
        "information theoretic metric learning",
        "sparse determinant metric learning",
        "least squares metric learning",
        "neighborhood components analysis",
        "local fisher discriminant analysis",
        "relative components analysis",
        "mahalanobis metric for clustering",
        "metric learning for kernel regression"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5251e5d46bef64e6a39055eecca67b5342a5fefe3744b73a744a58487651a209",
                "md5": "367c527abef7408d58f6b83245aee198",
                "sha256": "193c218ca967289ab988d307fa18ead34fb0ef439774b06867ca526a05d766a8"
            },
            "downloads": -1,
            "filename": "metric_learn-0.7.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "367c527abef7408d58f6b83245aee198",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 67810,
            "upload_time": "2023-10-09T04:53:59",
            "upload_time_iso_8601": "2023-10-09T04:53:59.439767Z",
            "url": "https://files.pythonhosted.org/packages/52/51/e5d46bef64e6a39055eecca67b5342a5fefe3744b73a744a58487651a209/metric_learn-0.7.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a8368efc352a16dcb1e6058b90776e21f91f8631104a0e0229d5151f4d95695d",
                "md5": "a7ece43ca2178b3ecad654a0eea37a8b",
                "sha256": "2b35246a1098d74163b16cc7779e0abfcbf9036050f4caa258e4fee55eb299cc"
            },
            "downloads": -1,
            "filename": "metric-learn-0.7.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a7ece43ca2178b3ecad654a0eea37a8b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 85962,
            "upload_time": "2023-10-09T04:54:02",
            "upload_time_iso_8601": "2023-10-09T04:54:02.495211Z",
            "url": "https://files.pythonhosted.org/packages/a8/36/8efc352a16dcb1e6058b90776e21f91f8631104a0e0229d5151f4d95695d/metric-learn-0.7.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-09 04:54:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scikit-learn-contrib",
    "github_project": "metric-learn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "landscape": true,
    "lcname": "metric-learn"
}
        
Elapsed time: 1.52048s