mgktools


Namemgktools JSON
Version 3.1.0 PyPI version JSON
download
home_pageNone
SummaryMarginalized Graph Kernel Library for Molecular Property Prediction
upload_time2025-01-14 17:54:28
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords chemistry machine learning molecular property prediction marginalized graph kernel drug discovery
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mgktools
Python Package using marginalized graph kernel (MGK) to predict molecular properties.

## Installation
Suggested Package Versions:
Python>=3.9, GCC==11.2, CUDA==11.7.
```
pip install git+https://gitlab.com/Xiangyan93/graphdot.git@feature/xy
pip install mgktools
```

## Hyperparameters
[hyperparameters](https://github.com/Xiangyan93/mgktools/tree/main/mgktools/hyperparameters) contains the JSON files that
define the hyperparameters for MGK.

## Related work
* [Predicting Single-Substance Phase Diagrams: A Kernel Approach on Graph Representations of Molecules](https://pubs.acs.org/doi/full/10.1021/acs.jpca.1c02391)
* [A Comparative Study of Marginalized Graph Kernel and Message-Passing Neural Network](https://pubs.acs.org/doi/full/10.1021/acs.jcim.1c01118)
* [Interpretable Molecular Property Predictions Using Marginalized Graph Kernels](https://pubs.acs.org/doi/full/10.1021/acs.jcim.3c00396)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mgktools",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "chemistry, machine learning, molecular property prediction, marginalized graph kernel, drug discovery",
    "author": null,
    "author_email": "Yan Xiang <yan.xiang@duke.edu>",
    "download_url": "https://files.pythonhosted.org/packages/8b/f9/103680a63dbffaf089ae4b44fd33853cbfeaaaca53535351d4dd0a4b7d76/mgktools-3.1.0.tar.gz",
    "platform": null,
    "description": "# mgktools\nPython Package using marginalized graph kernel (MGK) to predict molecular properties.\n\n## Installation\nSuggested Package Versions:\nPython>=3.9, GCC==11.2, CUDA==11.7.\n```\npip install git+https://gitlab.com/Xiangyan93/graphdot.git@feature/xy\npip install mgktools\n```\n\n## Hyperparameters\n[hyperparameters](https://github.com/Xiangyan93/mgktools/tree/main/mgktools/hyperparameters) contains the JSON files that\ndefine the hyperparameters for MGK.\n\n## Related work\n* [Predicting Single-Substance Phase Diagrams: A Kernel Approach on Graph Representations of Molecules](https://pubs.acs.org/doi/full/10.1021/acs.jpca.1c02391)\n* [A Comparative Study of Marginalized Graph Kernel and Message-Passing Neural Network](https://pubs.acs.org/doi/full/10.1021/acs.jcim.1c01118)\n* [Interpretable Molecular Property Predictions Using Marginalized Graph Kernels](https://pubs.acs.org/doi/full/10.1021/acs.jcim.3c00396)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Marginalized Graph Kernel Library for Molecular Property Prediction",
    "version": "3.1.0",
    "project_urls": {
        "PyPi": "https://pypi.org/project/mgktools/",
        "source": "https://github.com/xiangyan93/mgktools"
    },
    "split_keywords": [
        "chemistry",
        " machine learning",
        " molecular property prediction",
        " marginalized graph kernel",
        " drug discovery"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b9b78ad1ced14f9a692550fde0889c1a6f486444ebf71d34f63ad294347219ea",
                "md5": "d6a5ad5e3224a1cad6d12ba5386cb064",
                "sha256": "2548484b06b59ffa81a3f2eb577b35d78bf8f545dcd10233e080e773c35fa5e1"
            },
            "downloads": -1,
            "filename": "mgktools-3.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d6a5ad5e3224a1cad6d12ba5386cb064",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 71971,
            "upload_time": "2025-01-14T17:54:25",
            "upload_time_iso_8601": "2025-01-14T17:54:25.306910Z",
            "url": "https://files.pythonhosted.org/packages/b9/b7/8ad1ced14f9a692550fde0889c1a6f486444ebf71d34f63ad294347219ea/mgktools-3.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8bf9103680a63dbffaf089ae4b44fd33853cbfeaaaca53535351d4dd0a4b7d76",
                "md5": "b079938258668cc2600db24668d36e59",
                "sha256": "de1a121eb3b931f1404dd965248eb9da670164811a230a0d2ee81ce6962e8eed"
            },
            "downloads": -1,
            "filename": "mgktools-3.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b079938258668cc2600db24668d36e59",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 55350,
            "upload_time": "2025-01-14T17:54:28",
            "upload_time_iso_8601": "2025-01-14T17:54:28.845085Z",
            "url": "https://files.pythonhosted.org/packages/8b/f9/103680a63dbffaf089ae4b44fd33853cbfeaaaca53535351d4dd0a4b7d76/mgktools-3.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-14 17:54:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "xiangyan93",
    "github_project": "mgktools",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "mgktools"
}
        
Elapsed time: 0.44346s