mgraph-ai-service-cache-client


Namemgraph-ai-service-cache-client JSON
Version 0.7.0 PyPI version JSON
download
home_pagehttps://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client
SummaryMGraph-AI__Service__Cache__Client
upload_time2025-10-13 11:54:08
maintainerNone
docs_urlNone
authorDinis Cruz
requires_python<4.0,>=3.12
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MGraph AI Service Cache Client

[![Current Release](https://img.shields.io/badge/release-v0.7.0-blue)](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/releases)
[![Python](https://img.shields.io/badge/python-3.12-blue)](https://www.python.org/downloads/)
[![FastAPI](https://img.shields.io/badge/FastAPI-0.116.1-009688)](https://fastapi.tiangolo.com/)
[![AWS Lambda](https://img.shields.io/badge/AWS-Lambda-orange)](https://aws.amazon.com/lambda/)
[![License](https://img.shields.io/badge/license-Apache%202.0-green)](LICENSE)
[![CI Pipeline - DEV](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/actions/workflows/ci-pipeline__dev.yml/badge.svg)](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/actions)

A production-ready FastAPI microservice template for building MGraph-AI services. This template provides a complete scaffold with CI/CD pipeline, AWS Lambda deployment, and type-safe architecture.

## ๐ŸŽฏ Purpose

This repository serves as the base template for creating new MGraph-AI services. It includes:
- โœ… Complete FastAPI application structure  
- โœ… Multi-stage CI/CD pipeline (dev, qa, prod)
- โœ… AWS Lambda deployment configuration
- โœ… Type-safe architecture using OSBot-Utils
- โœ… Comprehensive test coverage
- โœ… API key authentication
- โœ… Health check and monitoring endpoints

**Note**: This is a template repository. To create your own service, see [Creating Services from Template](docs/dev/non-functional-requirements/version-1_0_0/README.md).

## ๐Ÿ“š Creating a New Service

To create a new service from this template, see [Creating Services from MGraph-AI__Service__Cache__Client](docs/dev/non-functional-requirements/version-1_0_0/README.md).

## ๐Ÿš€ Features

- **Type-Safe Architecture**: Built on OSBot-Utils type safety framework
- **Multi-Stage Deployment**: Automated CI/CD pipeline for dev, QA, and production
- **AWS Lambda Ready**: Optimized for serverless deployment
- **API Key Authentication**: Secure access control

## ๐Ÿ“‹ Table of Contents

- [Quick Start](#-quick-start)
- [Installation](#-installation)
- [API Documentation](#-api-documentation)
- [Configuration](#-configuration)
- [Development](#-development)
- [Testing](#-testing)
- [Deployment](#-deployment)
- [Security](#-security)
- [Contributing](#-contributing)
- [License](#-license)

## ๐ŸŽฏ Quick Start

### Local Development

```bash
# Clone the repository
git clone https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client.git
cd MGraph-AI__Service__Cache__Client

# Install dependencies
pip install -r requirements-test.txt
pip install -e .

# Set environment variables
export FAST_API__AUTH__API_KEY__NAME="x-api-key"
export FAST_API__AUTH__API_KEY__VALUE="your-secret-key"

# Run locally
./scripts/run-locally.sh
# or
uvicorn mgraph_ai_service_cache__client.fast_api.lambda_handler:app --reload --host 0.0.0.0 --port 10011
```

### Basic Usage

```python
import requests

# Set up authentication
headers = {"x-api-key": "your-secret-key"}
base_url = "http://localhost:10011"

# Check service health
response = requests.get(f"{base_url}/health", headers=headers)
print(response.json())

# Get service info
response = requests.get(f"{base_url}/info/version", headers=headers)
print(response.json())
```

## ๐Ÿ“ฆ Installation

### Prerequisites

- Python 3.12+
- AWS CLI (for deployment)
- Docker (for LocalStack testing)

### Using Poetry

```bash
# Install poetry if not already installed
pip install poetry

# Install dependencies
poetry install

# Activate virtual environment
poetry shell
```

### Using pip

```bash
# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements-test.txt
pip install -e .
```

## ๐Ÿ“– API Documentation

### Interactive API Documentation

Once the service is running, access the interactive API documentation at:
- Swagger UI: http://localhost:10011/docs
- ReDoc: http://localhost:10011/redoc

### Endpoints Overview

#### Health Endpoints

| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Service health check |
| `/health/detailed` | GET | Detailed health status |

#### Information Endpoints

| Endpoint | Method | Description |
|----------|--------|-------------|
| `/info/version` | GET | Get service version |
| `/info/status` | GET | Get service status |

## โš™๏ธ Configuration

### Environment Variables

| Variable | Description | Required | Default |
|----------|-------------|----------|---------|
| `FAST_API__AUTH__API_KEY__NAME` | Header name for API key | Yes | - |
| `FAST_API__AUTH__API_KEY__VALUE` | API key value | Yes | - |
| `AWS_REGION` | AWS region (triggers Lambda mode) | No | - |
| `DEBUG` | Enable debug logging | No | false |

### Configuration File

Create a `.env` file for local development:

```env
FAST_API__AUTH__API_KEY__NAME=x-api-key
FAST_API__AUTH__API_KEY__VALUE=development-key-12345
```

## ๐Ÿ› ๏ธ Development

### Project Structure

```
mgraph_ai_service_cache__client/
โ”œโ”€โ”€ fast_api/
โ”‚   โ”œโ”€โ”€ lambda_handler.py      # AWS Lambda entry point
โ”‚   โ”œโ”€โ”€ Service__Fast_API.py   # FastAPI application setup
โ”‚   โ””โ”€โ”€ routes/               # API endpoint definitions
โ”œโ”€โ”€ service/
โ”‚   โ””โ”€โ”€ info/               # Service information
โ”œโ”€โ”€ utils/
โ”‚   โ”œโ”€โ”€ deploy/             # Deployment utilities
โ”‚   โ””โ”€โ”€ Version.py          # Version management
โ””โ”€โ”€ config.py               # Service configuration
```

### Adding New Endpoints

1. Create a new route class in `fast_api/routes/`:

```python
from osbot_fast_api.api.Fast_API_Routes import Fast_API_Routes

class Routes__MyFeature(Fast_API_Routes):
    tag = 'my-feature'
    
    def my_endpoint(self, param: str = "default"):
        return {"result": param}
    
    def setup_routes(self):
        self.add_route_get(self.my_endpoint)
```

2. Register in `Service__Fast_API`:

```python
def setup_routes(self):
    # ... existing routes
    self.add_routes(Routes__MyFeature)
```

## ๐Ÿงช Testing

### Running Tests

```bash
# Run all tests
pytest

# Run with coverage
pytest --cov=mgraph_ai_service_cache__client

# Run specific test file
pytest tests/unit/fast_api/test_Service__Fast_API__client.py

# Run integration tests (requires LocalStack)
pytest tests/integration/
```

### Test Structure

```
tests/
โ”œโ”€โ”€ unit/                    # Unit tests
โ”‚   โ”œโ”€โ”€ fast_api/           # API tests
โ”‚   โ””โ”€โ”€ service/            # Service tests
โ””โ”€โ”€ deploy_aws/             # Deployment tests
```

## ๐Ÿš€ Deployment

### AWS Lambda Deployment

The service includes automated deployment scripts for multiple environments:

```bash
# Deploy to development
pytest tests/deploy_aws/test_Deploy__Service__to__dev.py

# Deploy to QA
pytest tests/deploy_aws/test_Deploy__Service__to__qa.py

# Deploy to production (manual trigger)
# Use GitHub Actions workflow
```

### CI/CD Pipeline

The project uses GitHub Actions for continuous deployment:

1. **Development Branch** (`dev`)
   - Runs tests with LocalStack
   - Deploys to dev environment
   - Increments minor version

2. **Main Branch** (`main`)
   - Runs comprehensive test suite
   - Deploys to QA environment
   - Increments major version

3. **Production** (manual)
   - Requires manual workflow trigger
   - Deploys to production environment

## ๐Ÿ”’ Security

### Authentication

API key authentication is required for all endpoints:

```python
headers = {"x-api-key": "your-secret-key"}
```

### Best Practices

1. **Never commit secrets** - Use environment variables
2. **Rotate API keys** - Regular key rotation
3. **Use HTTPS** - Always encrypt in transit
4. **Monitor access** - Log and audit API usage

## ๐Ÿค Contributing

We welcome contributions! Please follow these steps:

1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request

### Development Guidelines

- Write tests for new features
- Update documentation
- Follow existing code style
- Add type annotations
- Consider security implications

## ๐Ÿ”— Related Projects

- [OSBot-Utils](https://github.com/owasp-sbot/OSBot-Utils) - Core utilities library
- [OSBot-AWS](https://github.com/owasp-sbot/OSBot-AWS) - AWS integration layer
- [OSBot-Fast-API](https://github.com/owasp-sbot/OSBot-Fast-API) - FastAPI utilities

## ๐Ÿ“„ License

This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- Built with [FastAPI](https://fastapi.tiangolo.com/)
- Deployed on [AWS Lambda](https://aws.amazon.com/lambda/)

## ๐Ÿ“ž Support

- ๐Ÿ› Issues: [GitHub Issues](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/issues)
- ๐Ÿ’ฌ Discussions: [GitHub Discussions](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/discussions)

---

Created and maintained by [The Cyber Boardroom](https://github.com/the-cyber-boardroom) team

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client",
    "name": "mgraph-ai-service-cache-client",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.12",
    "maintainer_email": null,
    "keywords": null,
    "author": "Dinis Cruz",
    "author_email": "dinis.cruz@owasp.org",
    "download_url": "https://files.pythonhosted.org/packages/23/c5/274b36d20ba33e54555216cf9937155bf030f9b68b0c036353647796cf14/mgraph_ai_service_cache_client-0.7.0.tar.gz",
    "platform": null,
    "description": "# MGraph AI Service Cache Client\n\n[![Current Release](https://img.shields.io/badge/release-v0.7.0-blue)](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/releases)\n[![Python](https://img.shields.io/badge/python-3.12-blue)](https://www.python.org/downloads/)\n[![FastAPI](https://img.shields.io/badge/FastAPI-0.116.1-009688)](https://fastapi.tiangolo.com/)\n[![AWS Lambda](https://img.shields.io/badge/AWS-Lambda-orange)](https://aws.amazon.com/lambda/)\n[![License](https://img.shields.io/badge/license-Apache%202.0-green)](LICENSE)\n[![CI Pipeline - DEV](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/actions/workflows/ci-pipeline__dev.yml/badge.svg)](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/actions)\n\nA production-ready FastAPI microservice template for building MGraph-AI services. This template provides a complete scaffold with CI/CD pipeline, AWS Lambda deployment, and type-safe architecture.\n\n## \ud83c\udfaf Purpose\n\nThis repository serves as the base template for creating new MGraph-AI services. It includes:\n- \u2705 Complete FastAPI application structure  \n- \u2705 Multi-stage CI/CD pipeline (dev, qa, prod)\n- \u2705 AWS Lambda deployment configuration\n- \u2705 Type-safe architecture using OSBot-Utils\n- \u2705 Comprehensive test coverage\n- \u2705 API key authentication\n- \u2705 Health check and monitoring endpoints\n\n**Note**: This is a template repository. To create your own service, see [Creating Services from Template](docs/dev/non-functional-requirements/version-1_0_0/README.md).\n\n## \ud83d\udcda Creating a New Service\n\nTo create a new service from this template, see [Creating Services from MGraph-AI__Service__Cache__Client](docs/dev/non-functional-requirements/version-1_0_0/README.md).\n\n## \ud83d\ude80 Features\n\n- **Type-Safe Architecture**: Built on OSBot-Utils type safety framework\n- **Multi-Stage Deployment**: Automated CI/CD pipeline for dev, QA, and production\n- **AWS Lambda Ready**: Optimized for serverless deployment\n- **API Key Authentication**: Secure access control\n\n## \ud83d\udccb Table of Contents\n\n- [Quick Start](#-quick-start)\n- [Installation](#-installation)\n- [API Documentation](#-api-documentation)\n- [Configuration](#-configuration)\n- [Development](#-development)\n- [Testing](#-testing)\n- [Deployment](#-deployment)\n- [Security](#-security)\n- [Contributing](#-contributing)\n- [License](#-license)\n\n## \ud83c\udfaf Quick Start\n\n### Local Development\n\n```bash\n# Clone the repository\ngit clone https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client.git\ncd MGraph-AI__Service__Cache__Client\n\n# Install dependencies\npip install -r requirements-test.txt\npip install -e .\n\n# Set environment variables\nexport FAST_API__AUTH__API_KEY__NAME=\"x-api-key\"\nexport FAST_API__AUTH__API_KEY__VALUE=\"your-secret-key\"\n\n# Run locally\n./scripts/run-locally.sh\n# or\nuvicorn mgraph_ai_service_cache__client.fast_api.lambda_handler:app --reload --host 0.0.0.0 --port 10011\n```\n\n### Basic Usage\n\n```python\nimport requests\n\n# Set up authentication\nheaders = {\"x-api-key\": \"your-secret-key\"}\nbase_url = \"http://localhost:10011\"\n\n# Check service health\nresponse = requests.get(f\"{base_url}/health\", headers=headers)\nprint(response.json())\n\n# Get service info\nresponse = requests.get(f\"{base_url}/info/version\", headers=headers)\nprint(response.json())\n```\n\n## \ud83d\udce6 Installation\n\n### Prerequisites\n\n- Python 3.12+\n- AWS CLI (for deployment)\n- Docker (for LocalStack testing)\n\n### Using Poetry\n\n```bash\n# Install poetry if not already installed\npip install poetry\n\n# Install dependencies\npoetry install\n\n# Activate virtual environment\npoetry shell\n```\n\n### Using pip\n\n```bash\n# Create virtual environment\npython -m venv venv\nsource venv/bin/activate  # On Windows: venv\\Scripts\\activate\n\n# Install dependencies\npip install -r requirements-test.txt\npip install -e .\n```\n\n## \ud83d\udcd6 API Documentation\n\n### Interactive API Documentation\n\nOnce the service is running, access the interactive API documentation at:\n- Swagger UI: http://localhost:10011/docs\n- ReDoc: http://localhost:10011/redoc\n\n### Endpoints Overview\n\n#### Health Endpoints\n\n| Endpoint | Method | Description |\n|----------|--------|-------------|\n| `/health` | GET | Service health check |\n| `/health/detailed` | GET | Detailed health status |\n\n#### Information Endpoints\n\n| Endpoint | Method | Description |\n|----------|--------|-------------|\n| `/info/version` | GET | Get service version |\n| `/info/status` | GET | Get service status |\n\n## \u2699\ufe0f Configuration\n\n### Environment Variables\n\n| Variable | Description | Required | Default |\n|----------|-------------|----------|---------|\n| `FAST_API__AUTH__API_KEY__NAME` | Header name for API key | Yes | - |\n| `FAST_API__AUTH__API_KEY__VALUE` | API key value | Yes | - |\n| `AWS_REGION` | AWS region (triggers Lambda mode) | No | - |\n| `DEBUG` | Enable debug logging | No | false |\n\n### Configuration File\n\nCreate a `.env` file for local development:\n\n```env\nFAST_API__AUTH__API_KEY__NAME=x-api-key\nFAST_API__AUTH__API_KEY__VALUE=development-key-12345\n```\n\n## \ud83d\udee0\ufe0f Development\n\n### Project Structure\n\n```\nmgraph_ai_service_cache__client/\n\u251c\u2500\u2500 fast_api/\n\u2502   \u251c\u2500\u2500 lambda_handler.py      # AWS Lambda entry point\n\u2502   \u251c\u2500\u2500 Service__Fast_API.py   # FastAPI application setup\n\u2502   \u2514\u2500\u2500 routes/               # API endpoint definitions\n\u251c\u2500\u2500 service/\n\u2502   \u2514\u2500\u2500 info/               # Service information\n\u251c\u2500\u2500 utils/\n\u2502   \u251c\u2500\u2500 deploy/             # Deployment utilities\n\u2502   \u2514\u2500\u2500 Version.py          # Version management\n\u2514\u2500\u2500 config.py               # Service configuration\n```\n\n### Adding New Endpoints\n\n1. Create a new route class in `fast_api/routes/`:\n\n```python\nfrom osbot_fast_api.api.Fast_API_Routes import Fast_API_Routes\n\nclass Routes__MyFeature(Fast_API_Routes):\n    tag = 'my-feature'\n    \n    def my_endpoint(self, param: str = \"default\"):\n        return {\"result\": param}\n    \n    def setup_routes(self):\n        self.add_route_get(self.my_endpoint)\n```\n\n2. Register in `Service__Fast_API`:\n\n```python\ndef setup_routes(self):\n    # ... existing routes\n    self.add_routes(Routes__MyFeature)\n```\n\n## \ud83e\uddea Testing\n\n### Running Tests\n\n```bash\n# Run all tests\npytest\n\n# Run with coverage\npytest --cov=mgraph_ai_service_cache__client\n\n# Run specific test file\npytest tests/unit/fast_api/test_Service__Fast_API__client.py\n\n# Run integration tests (requires LocalStack)\npytest tests/integration/\n```\n\n### Test Structure\n\n```\ntests/\n\u251c\u2500\u2500 unit/                    # Unit tests\n\u2502   \u251c\u2500\u2500 fast_api/           # API tests\n\u2502   \u2514\u2500\u2500 service/            # Service tests\n\u2514\u2500\u2500 deploy_aws/             # Deployment tests\n```\n\n## \ud83d\ude80 Deployment\n\n### AWS Lambda Deployment\n\nThe service includes automated deployment scripts for multiple environments:\n\n```bash\n# Deploy to development\npytest tests/deploy_aws/test_Deploy__Service__to__dev.py\n\n# Deploy to QA\npytest tests/deploy_aws/test_Deploy__Service__to__qa.py\n\n# Deploy to production (manual trigger)\n# Use GitHub Actions workflow\n```\n\n### CI/CD Pipeline\n\nThe project uses GitHub Actions for continuous deployment:\n\n1. **Development Branch** (`dev`)\n   - Runs tests with LocalStack\n   - Deploys to dev environment\n   - Increments minor version\n\n2. **Main Branch** (`main`)\n   - Runs comprehensive test suite\n   - Deploys to QA environment\n   - Increments major version\n\n3. **Production** (manual)\n   - Requires manual workflow trigger\n   - Deploys to production environment\n\n## \ud83d\udd12 Security\n\n### Authentication\n\nAPI key authentication is required for all endpoints:\n\n```python\nheaders = {\"x-api-key\": \"your-secret-key\"}\n```\n\n### Best Practices\n\n1. **Never commit secrets** - Use environment variables\n2. **Rotate API keys** - Regular key rotation\n3. **Use HTTPS** - Always encrypt in transit\n4. **Monitor access** - Log and audit API usage\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please follow these steps:\n\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/amazing-feature`)\n3. Commit your changes (`git commit -m 'Add amazing feature'`)\n4. Push to the branch (`git push origin feature/amazing-feature`)\n5. Open a Pull Request\n\n### Development Guidelines\n\n- Write tests for new features\n- Update documentation\n- Follow existing code style\n- Add type annotations\n- Consider security implications\n\n## \ud83d\udd17 Related Projects\n\n- [OSBot-Utils](https://github.com/owasp-sbot/OSBot-Utils) - Core utilities library\n- [OSBot-AWS](https://github.com/owasp-sbot/OSBot-AWS) - AWS integration layer\n- [OSBot-Fast-API](https://github.com/owasp-sbot/OSBot-Fast-API) - FastAPI utilities\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- Built with [FastAPI](https://fastapi.tiangolo.com/)\n- Deployed on [AWS Lambda](https://aws.amazon.com/lambda/)\n\n## \ud83d\udcde Support\n\n- \ud83d\udc1b Issues: [GitHub Issues](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/issues)\n- \ud83d\udcac Discussions: [GitHub Discussions](https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client/discussions)\n\n---\n\nCreated and maintained by [The Cyber Boardroom](https://github.com/the-cyber-boardroom) team\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "MGraph-AI__Service__Cache__Client",
    "version": "0.7.0",
    "project_urls": {
        "Homepage": "https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client",
        "Repository": "https://github.com/the-cyber-boardroom/MGraph-AI__Service__Cache__Client"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "18143d1fe63d75da7c7d131647b96802df9fcda443e3c409692b159e1b55c3eb",
                "md5": "906890eea47db956dae077216a8ac5e1",
                "sha256": "63ecac8f59b2235da5cf3943161abbf2cbf74201da6cd8b198674ad53dca87e9"
            },
            "downloads": -1,
            "filename": "mgraph_ai_service_cache_client-0.7.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "906890eea47db956dae077216a8ac5e1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.12",
            "size": 67364,
            "upload_time": "2025-10-13T11:54:07",
            "upload_time_iso_8601": "2025-10-13T11:54:07.064909Z",
            "url": "https://files.pythonhosted.org/packages/18/14/3d1fe63d75da7c7d131647b96802df9fcda443e3c409692b159e1b55c3eb/mgraph_ai_service_cache_client-0.7.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "23c5274b36d20ba33e54555216cf9937155bf030f9b68b0c036353647796cf14",
                "md5": "c8089c071f799aa0508ef619f1f550be",
                "sha256": "fe827aa1eeba683a74d087b2e2b9f2f67de30607c2c30175c62d54801d2c0923"
            },
            "downloads": -1,
            "filename": "mgraph_ai_service_cache_client-0.7.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c8089c071f799aa0508ef619f1f550be",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.12",
            "size": 31058,
            "upload_time": "2025-10-13T11:54:08",
            "upload_time_iso_8601": "2025-10-13T11:54:08.295400Z",
            "url": "https://files.pythonhosted.org/packages/23/c5/274b36d20ba33e54555216cf9937155bf030f9b68b0c036353647796cf14/mgraph_ai_service_cache_client-0.7.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-13 11:54:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "the-cyber-boardroom",
    "github_project": "MGraph-AI__Service__Cache__Client",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mgraph-ai-service-cache-client"
}
        
Elapsed time: 1.11143s