[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Multi-Head Mixture of Experts (MHMoE)
MH-MoE to collectively attend to information from various representation
spaces within different experts to deepen context understanding while significantly enhancing expert activation.
## install
`pip3 install mh-moe`
## usage
```python
import torch
from mh_moe.main import MHMoE
# Define model parameters
dim = 512
heads = 8
num_experts = 4
num_layers = 3
# Create MHMoE model instance
model = MHMoE(dim, heads, num_experts, num_layers)
# Generate dummy input
batch_size = 10
seq_length = 20
dummy_input = torch.rand(batch_size, seq_length, dim)
dummy_mask = torch.ones(batch_size, seq_length) # Example mask
# Forward pass through the model
output = model(dummy_input, dummy_mask)
# Print output and its shape
print(output)
print(output.shape)
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/MHMoE",
"name": "mh-moe",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.6",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/c3/27/b11a07721e0f2eedc06e955a5008b7261c52624016c41e74aaa0acb22a04/mh_moe-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Multi-Head Mixture of Experts (MHMoE)\n\nMH-MoE to collectively attend to information from various representation\nspaces within different experts to deepen context understanding while significantly enhancing expert activation. \n\n## install\n`pip3 install mh-moe`\n\n\n## usage\n```python\nimport torch\nfrom mh_moe.main import MHMoE\n\n# Define model parameters\ndim = 512\nheads = 8\nnum_experts = 4\nnum_layers = 3\n\n# Create MHMoE model instance\nmodel = MHMoE(dim, heads, num_experts, num_layers)\n\n# Generate dummy input\nbatch_size = 10\nseq_length = 20\ndummy_input = torch.rand(batch_size, seq_length, dim)\ndummy_mask = torch.ones(batch_size, seq_length) # Example mask\n\n# Forward pass through the model\noutput = model(dummy_input, dummy_mask)\n\n# Print output and its shape\nprint(output)\nprint(output.shape)\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/MHMoE",
"Homepage": "https://github.com/kyegomez/MHMoE",
"Repository": "https://github.com/kyegomez/MHMoE"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ef11326c2c8ebb4ee326644183a3ba19b0fbf69cafa69e848fc6ccf9be47dfcb",
"md5": "af965822c8e7695281e3f4d739af056b",
"sha256": "b984be79496acf7cd3ab503ecb5c06b84f456a3f5599adae7558ea2a24ae35e7"
},
"downloads": -1,
"filename": "mh_moe-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "af965822c8e7695281e3f4d739af056b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.6",
"size": 4942,
"upload_time": "2024-04-27T00:01:21",
"upload_time_iso_8601": "2024-04-27T00:01:21.906977Z",
"url": "https://files.pythonhosted.org/packages/ef/11/326c2c8ebb4ee326644183a3ba19b0fbf69cafa69e848fc6ccf9be47dfcb/mh_moe-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c327b11a07721e0f2eedc06e955a5008b7261c52624016c41e74aaa0acb22a04",
"md5": "504c72e206e37dd53c307649e302bd5e",
"sha256": "2378d464f54c207ed129e57aa3b83ece6c3c7d675898a9bf26a1dc8d4c5afa94"
},
"downloads": -1,
"filename": "mh_moe-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "504c72e206e37dd53c307649e302bd5e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.6",
"size": 5066,
"upload_time": "2024-04-27T00:01:23",
"upload_time_iso_8601": "2024-04-27T00:01:23.504803Z",
"url": "https://files.pythonhosted.org/packages/c3/27/b11a07721e0f2eedc06e955a5008b7261c52624016c41e74aaa0acb22a04/mh_moe-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-27 00:01:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "MHMoE",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "mh-moe"
}