Multi-iteration Stochastic Estimator
------------------------------------
The `Multi-Iteration stochastiC Estimator`_ (MICE) is an estimator of gradients to be used in stochastic optimization. It uses control variates to build a hierarchy of iterations, adaptively sampling to keep the statistical variance below tolerance in an optimal fashion, cost-wise. The tolerance on the statistical error decreases proportionally to the square of the gradient norm, thus, SGD-MICE converges linearly in strongly convex L-smooth functions.
.. _Multi-Iteration stochastiC Estimator: https://arxiv.org/abs/2011.01718
This python implementation of MICE is able to
* estimate expectations or finite sums of gradients of functions;
* choose the optimal sample sizes in order to minimize the sampling cost;
* build a hierarchy of iterations that minimizes the total work;
* use a resampling technique to compute the gradient norm, thus enforcing stability;
* define a tolerance on the norm of the gradient estimate or a maximum number of evaluations as a stopping criterion.
Using MICE
----------
Using MICE is as simple as
>>> import numpy as np
>>> from mice import MICE
>>>
>>>
>>> def gradient(x, thts):
>>> return x - thts
>>>
>>>
>>> def sampler(n):
>>> return np.random.random((n, 1))
>>>
>>>
>>> df = MICE(gradient , sampler=sampler)
>>> x = 10
>>> for i in range(10):
... grad = df(x)
... x = x - grad
However, it is flexible enough to tackle more complex problems.
For more information on how to use MICE and examples, check the `documentation`_.
.. _documentation: https://mice.readthedocs.io
Raw data
{
"_id": null,
"home_page": "https://bitbucket.org/agcarlon/mice",
"name": "mice",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "stochastic optimization, hierarchical methods, Monte Carlo",
"author": "Andre Gustavo Carlon",
"author_email": "agcarlon@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/10/78/71086b7529077859321d44ed5252a1d5dc52624d753399dee395e2b43f9c/mice-0.1.31.tar.gz",
"platform": null,
"description": "Multi-iteration Stochastic Estimator\n------------------------------------\n\nThe `Multi-Iteration stochastiC Estimator`_ (MICE) is an estimator of gradients to be used in stochastic optimization. It uses control variates to build a hierarchy of iterations, adaptively sampling to keep the statistical variance below tolerance in an optimal fashion, cost-wise. The tolerance on the statistical error decreases proportionally to the square of the gradient norm, thus, SGD-MICE converges linearly in strongly convex L-smooth functions.\n\n.. _Multi-Iteration stochastiC Estimator: https://arxiv.org/abs/2011.01718\n\nThis python implementation of MICE is able to\n\n* estimate expectations or finite sums of gradients of functions;\n\n* choose the optimal sample sizes in order to minimize the sampling cost;\n\n* build a hierarchy of iterations that minimizes the total work;\n\n* use a resampling technique to compute the gradient norm, thus enforcing stability;\n\n* define a tolerance on the norm of the gradient estimate or a maximum number of evaluations as a stopping criterion.\n\nUsing MICE\n----------\n\nUsing MICE is as simple as\n\n >>> import numpy as np\n >>> from mice import MICE\n >>>\n >>>\n >>> def gradient(x, thts):\n >>> return x - thts\n >>>\n >>>\n >>> def sampler(n):\n >>> return np.random.random((n, 1))\n >>>\n >>>\n >>> df = MICE(gradient , sampler=sampler)\n >>> x = 10\n >>> for i in range(10):\n ... grad = df(x)\n ... x = x - grad\n\n\nHowever, it is flexible enough to tackle more complex problems.\nFor more information on how to use MICE and examples, check the `documentation`_.\n\n.. _documentation: https://mice.readthedocs.io\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "Multi-iteration Stochastic Estimator",
"version": "0.1.31",
"project_urls": {
"Documentation": "https://mice.readthedocs.io/",
"Homepage": "https://bitbucket.org/agcarlon/mice",
"Manuscript": "https://arxiv.org/abs/2011.01718",
"Source": "https://bitbucket.org/agcarlon/mice"
},
"split_keywords": [
"stochastic optimization",
" hierarchical methods",
" monte carlo"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1d8df872b9c2c253303abc9686309aa24aaf7864fc2d6fb257d37681a2377ae4",
"md5": "19bfb81baaeb0e88dc9365f84d6f3c08",
"sha256": "90c3e8c3716aee8bfec9f8f71fdadbc7e692168064984bda5f4d45690cff157a"
},
"downloads": -1,
"filename": "mice-0.1.31-py3-none-any.whl",
"has_sig": false,
"md5_digest": "19bfb81baaeb0e88dc9365f84d6f3c08",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 26187,
"upload_time": "2024-05-27T09:51:18",
"upload_time_iso_8601": "2024-05-27T09:51:18.189536Z",
"url": "https://files.pythonhosted.org/packages/1d/8d/f872b9c2c253303abc9686309aa24aaf7864fc2d6fb257d37681a2377ae4/mice-0.1.31-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "107871086b7529077859321d44ed5252a1d5dc52624d753399dee395e2b43f9c",
"md5": "bf846bf24bad965c2f91463e8c0d9003",
"sha256": "10a747481e129f2369017df068bb371c109997501ee2df41e4b9f25cd6eab4e5"
},
"downloads": -1,
"filename": "mice-0.1.31.tar.gz",
"has_sig": false,
"md5_digest": "bf846bf24bad965c2f91463e8c0d9003",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 899084,
"upload_time": "2024-05-27T09:51:21",
"upload_time_iso_8601": "2024-05-27T09:51:21.096739Z",
"url": "https://files.pythonhosted.org/packages/10/78/71086b7529077859321d44ed5252a1d5dc52624d753399dee395e2b43f9c/mice-0.1.31.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-27 09:51:21",
"github": false,
"gitlab": false,
"bitbucket": true,
"codeberg": false,
"bitbucket_user": "agcarlon",
"bitbucket_project": "mice",
"lcname": "mice"
}