micromind


Namemicromind JSON
Version 0.2.1 PyPI version JSON
download
home_page
SummaryMicroMind
upload_time2023-12-06 10:18:56
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords feed reader tutorial
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Python version: 3.8 | 3.9 | 3.10](https://img.shields.io/badge/python-3.8%20|3.9%20|%203.10-blue)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/fpaissan/micromind/blob/main/LICENSE)
[![PyPI version](https://img.shields.io/pypi/v/micromind)](https://pypi.org/project/micromind/)

This is the official repo of `micromind`, a toolkit that aims at bridging two communities: artificial intelligence and embedded systems. `micromind` is based on [PyTorch](https://pytorch.org) and provides exportability for the supported models in ONNX, Intel OpenVINO, and TFLite.

---------------------------------------------------------------------------------------------------------

## 💡 Key features

- Smooth flow from research to deployment;
- Support for multimedia analytics recipes (image classification, sound event detection, etc);
- Detailed API documentation;
- Tutorials for embedded deployment;

---------------------------------------------------------------------------------------------------------

## 🛠️️ Installation

### Using Pip

First of all, install [Python 3.8 or later](https://www.python.org). Open a terminal and run:

```
pip install micromind
```
for the basic install. To install `micromind` with the full exportability features, run

```
pip install micromind[conversion]
```

### From source

First of all, install [Python 3.9 or later](https://www.python.org).
Clone or download and extract the repository, navigate to `<path-to-repository>`, open a
terminal and run:

```
pip install -e .
```
for the basic install. To install `micromind` with the full exportability features, run

```
pip install -e .[conversion]
```

### Training networks with recipes

After the installation, get started looking at the examples and the docs!

### Export your model and run it on your MCU
Check out [this](https://docs.google.com/document/d/1zt5urvNtI9VSJcoJdIeo10YrdH-tZNcS4JHbT1z5udI/edit?usp=sharing)
tutorial and have fun deploying your network on MCU!

---------------------------------------------------------------------------------------------------------

## 📧 Contact

[francescopaissan@gmail.com](mailto:francescopaissan@gmail.com)

---------------------------------------------------------------------------------------------------------


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "micromind",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "feed,reader,tutorial",
    "author": "",
    "author_email": "Francesco Paissan & others <francescopaissan@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/3c/b6/4b514e7f12c6621a9edb32627a169dfa7e802bc2cbdae69e7390da8d128a/micromind-0.2.1.tar.gz",
    "platform": null,
    "description": "[![Python version: 3.8 | 3.9 | 3.10](https://img.shields.io/badge/python-3.8%20|3.9%20|%203.10-blue)](https://www.python.org/downloads/)\n[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/fpaissan/micromind/blob/main/LICENSE)\n[![PyPI version](https://img.shields.io/pypi/v/micromind)](https://pypi.org/project/micromind/)\n\nThis is the official repo of `micromind`, a toolkit that aims at bridging two communities: artificial intelligence and embedded systems. `micromind` is based on [PyTorch](https://pytorch.org) and provides exportability for the supported models in ONNX, Intel OpenVINO, and TFLite.\n\n---------------------------------------------------------------------------------------------------------\n\n## \ud83d\udca1 Key features\n\n- Smooth flow from research to deployment;\n- Support for multimedia analytics recipes (image classification, sound event detection, etc);\n- Detailed API documentation;\n- Tutorials for embedded deployment;\n\n---------------------------------------------------------------------------------------------------------\n\n## \ud83d\udee0\ufe0f\ufe0f Installation\n\n### Using Pip\n\nFirst of all, install [Python 3.8 or later](https://www.python.org). Open a terminal and run:\n\n```\npip install micromind\n```\nfor the basic install. To install `micromind` with the full exportability features, run\n\n```\npip install micromind[conversion]\n```\n\n### From source\n\nFirst of all, install [Python 3.9 or later](https://www.python.org).\nClone or download and extract the repository, navigate to `<path-to-repository>`, open a\nterminal and run:\n\n```\npip install -e .\n```\nfor the basic install. To install `micromind` with the full exportability features, run\n\n```\npip install -e .[conversion]\n```\n\n### Training networks with recipes\n\nAfter the installation, get started looking at the examples and the docs!\n\n### Export your model and run it on your MCU\nCheck out [this](https://docs.google.com/document/d/1zt5urvNtI9VSJcoJdIeo10YrdH-tZNcS4JHbT1z5udI/edit?usp=sharing)\ntutorial and have fun deploying your network on MCU!\n\n---------------------------------------------------------------------------------------------------------\n\n## \ud83d\udce7 Contact\n\n[francescopaissan@gmail.com](mailto:francescopaissan@gmail.com)\n\n---------------------------------------------------------------------------------------------------------\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "MicroMind",
    "version": "0.2.1",
    "project_urls": {
        "Homepage": "https://github.com/fpaissan/micromind"
    },
    "split_keywords": [
        "feed",
        "reader",
        "tutorial"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8a3ede8e882b44734e6fab0e209e04aff034afc8e78891b59a0774e3e38c3537",
                "md5": "6fee3357f6c3fb87291247fa7167d0ad",
                "sha256": "4e3bacbf212e79c9df05ce2ed91781dda58e357075745b81b44fa1dab02dd6d6"
            },
            "downloads": -1,
            "filename": "micromind-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6fee3357f6c3fb87291247fa7167d0ad",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 39935,
            "upload_time": "2023-12-06T10:18:55",
            "upload_time_iso_8601": "2023-12-06T10:18:55.495287Z",
            "url": "https://files.pythonhosted.org/packages/8a/3e/de8e882b44734e6fab0e209e04aff034afc8e78891b59a0774e3e38c3537/micromind-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3cb64b514e7f12c6621a9edb32627a169dfa7e802bc2cbdae69e7390da8d128a",
                "md5": "c5cdb614dad06955a3f554f60139984c",
                "sha256": "118cfadf1afc5ad332982732a8b8dc85b2b01044848b23a24ad2e3dc83cfdb8e"
            },
            "downloads": -1,
            "filename": "micromind-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c5cdb614dad06955a3f554f60139984c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 36122,
            "upload_time": "2023-12-06T10:18:56",
            "upload_time_iso_8601": "2023-12-06T10:18:56.943569Z",
            "url": "https://files.pythonhosted.org/packages/3c/b6/4b514e7f12c6621a9edb32627a169dfa7e802bc2cbdae69e7390da8d128a/micromind-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 10:18:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fpaissan",
    "github_project": "micromind",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "micromind"
}
        
Elapsed time: 0.15604s