Name | micromind JSON |
Version |
0.2.1
JSON |
| download |
home_page | |
Summary | MicroMind |
upload_time | 2023-12-06 10:18:56 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.8 |
license | |
keywords |
feed
reader
tutorial
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[![Python version: 3.8 | 3.9 | 3.10](https://img.shields.io/badge/python-3.8%20|3.9%20|%203.10-blue)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/fpaissan/micromind/blob/main/LICENSE)
[![PyPI version](https://img.shields.io/pypi/v/micromind)](https://pypi.org/project/micromind/)
This is the official repo of `micromind`, a toolkit that aims at bridging two communities: artificial intelligence and embedded systems. `micromind` is based on [PyTorch](https://pytorch.org) and provides exportability for the supported models in ONNX, Intel OpenVINO, and TFLite.
---------------------------------------------------------------------------------------------------------
## 💡 Key features
- Smooth flow from research to deployment;
- Support for multimedia analytics recipes (image classification, sound event detection, etc);
- Detailed API documentation;
- Tutorials for embedded deployment;
---------------------------------------------------------------------------------------------------------
## 🛠️️ Installation
### Using Pip
First of all, install [Python 3.8 or later](https://www.python.org). Open a terminal and run:
```
pip install micromind
```
for the basic install. To install `micromind` with the full exportability features, run
```
pip install micromind[conversion]
```
### From source
First of all, install [Python 3.9 or later](https://www.python.org).
Clone or download and extract the repository, navigate to `<path-to-repository>`, open a
terminal and run:
```
pip install -e .
```
for the basic install. To install `micromind` with the full exportability features, run
```
pip install -e .[conversion]
```
### Training networks with recipes
After the installation, get started looking at the examples and the docs!
### Export your model and run it on your MCU
Check out [this](https://docs.google.com/document/d/1zt5urvNtI9VSJcoJdIeo10YrdH-tZNcS4JHbT1z5udI/edit?usp=sharing)
tutorial and have fun deploying your network on MCU!
---------------------------------------------------------------------------------------------------------
## 📧 Contact
[francescopaissan@gmail.com](mailto:francescopaissan@gmail.com)
---------------------------------------------------------------------------------------------------------
Raw data
{
"_id": null,
"home_page": "",
"name": "micromind",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "feed,reader,tutorial",
"author": "",
"author_email": "Francesco Paissan & others <francescopaissan@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/3c/b6/4b514e7f12c6621a9edb32627a169dfa7e802bc2cbdae69e7390da8d128a/micromind-0.2.1.tar.gz",
"platform": null,
"description": "[![Python version: 3.8 | 3.9 | 3.10](https://img.shields.io/badge/python-3.8%20|3.9%20|%203.10-blue)](https://www.python.org/downloads/)\n[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/fpaissan/micromind/blob/main/LICENSE)\n[![PyPI version](https://img.shields.io/pypi/v/micromind)](https://pypi.org/project/micromind/)\n\nThis is the official repo of `micromind`, a toolkit that aims at bridging two communities: artificial intelligence and embedded systems. `micromind` is based on [PyTorch](https://pytorch.org) and provides exportability for the supported models in ONNX, Intel OpenVINO, and TFLite.\n\n---------------------------------------------------------------------------------------------------------\n\n## \ud83d\udca1 Key features\n\n- Smooth flow from research to deployment;\n- Support for multimedia analytics recipes (image classification, sound event detection, etc);\n- Detailed API documentation;\n- Tutorials for embedded deployment;\n\n---------------------------------------------------------------------------------------------------------\n\n## \ud83d\udee0\ufe0f\ufe0f Installation\n\n### Using Pip\n\nFirst of all, install [Python 3.8 or later](https://www.python.org). Open a terminal and run:\n\n```\npip install micromind\n```\nfor the basic install. To install `micromind` with the full exportability features, run\n\n```\npip install micromind[conversion]\n```\n\n### From source\n\nFirst of all, install [Python 3.9 or later](https://www.python.org).\nClone or download and extract the repository, navigate to `<path-to-repository>`, open a\nterminal and run:\n\n```\npip install -e .\n```\nfor the basic install. To install `micromind` with the full exportability features, run\n\n```\npip install -e .[conversion]\n```\n\n### Training networks with recipes\n\nAfter the installation, get started looking at the examples and the docs!\n\n### Export your model and run it on your MCU\nCheck out [this](https://docs.google.com/document/d/1zt5urvNtI9VSJcoJdIeo10YrdH-tZNcS4JHbT1z5udI/edit?usp=sharing)\ntutorial and have fun deploying your network on MCU!\n\n---------------------------------------------------------------------------------------------------------\n\n## \ud83d\udce7 Contact\n\n[francescopaissan@gmail.com](mailto:francescopaissan@gmail.com)\n\n---------------------------------------------------------------------------------------------------------\n\n",
"bugtrack_url": null,
"license": "",
"summary": "MicroMind",
"version": "0.2.1",
"project_urls": {
"Homepage": "https://github.com/fpaissan/micromind"
},
"split_keywords": [
"feed",
"reader",
"tutorial"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8a3ede8e882b44734e6fab0e209e04aff034afc8e78891b59a0774e3e38c3537",
"md5": "6fee3357f6c3fb87291247fa7167d0ad",
"sha256": "4e3bacbf212e79c9df05ce2ed91781dda58e357075745b81b44fa1dab02dd6d6"
},
"downloads": -1,
"filename": "micromind-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6fee3357f6c3fb87291247fa7167d0ad",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 39935,
"upload_time": "2023-12-06T10:18:55",
"upload_time_iso_8601": "2023-12-06T10:18:55.495287Z",
"url": "https://files.pythonhosted.org/packages/8a/3e/de8e882b44734e6fab0e209e04aff034afc8e78891b59a0774e3e38c3537/micromind-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3cb64b514e7f12c6621a9edb32627a169dfa7e802bc2cbdae69e7390da8d128a",
"md5": "c5cdb614dad06955a3f554f60139984c",
"sha256": "118cfadf1afc5ad332982732a8b8dc85b2b01044848b23a24ad2e3dc83cfdb8e"
},
"downloads": -1,
"filename": "micromind-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "c5cdb614dad06955a3f554f60139984c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 36122,
"upload_time": "2023-12-06T10:18:56",
"upload_time_iso_8601": "2023-12-06T10:18:56.943569Z",
"url": "https://files.pythonhosted.org/packages/3c/b6/4b514e7f12c6621a9edb32627a169dfa7e802bc2cbdae69e7390da8d128a/micromind-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-06 10:18:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fpaissan",
"github_project": "micromind",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "micromind"
}