miding


Namemiding JSON
Version 3.2.0 PyPI version JSON
download
home_pageNone
SummaryA generator of midi score based on GRU.
upload_time2025-07-28 07:25:14
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords midi miding neuronal generate music jerry skywolf
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Miding

This program names '**miding**', an abbreviation of '**Midi Neuronal Generator**', 
which aims to generate listenable midi sequences, attempting to create fair scores.

Sincerely thanks for _**keras**_, the neuronal network model we have applied.
In this program, the model construction is two GRU layer and a Dense layer with the activation Softmax.
### Download

Here is our website:
* https://github.com/JerrySkywolf/miding

This package could also be downloaded through PyPi by:

`pip install miding`

View at the webpage
* https://pypi.org/project/miding

### How to use the model?

First, **COPY** the model files (*.keras) in the package path to your programme directory before call Predict!

And then, for example, you could use a random seed:

``from miding import Predict, Seed``

``s = Seed(midi_file='example_seed.mid')``

``Predict(seed=s.get_seed(),epoch=128, model_version=1751770203)``



 

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "miding",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "midi, miding, neuronal, generate, music, Jerry Skywolf",
    "author": null,
    "author_email": "Jerry_Skywolf <jerryskywolf@outlook.com>",
    "download_url": "https://files.pythonhosted.org/packages/08/56/5c1428976ea5a472b33752fe0e1820877dea7af1ac5f720a3e018d5388f6/miding-3.2.0.tar.gz",
    "platform": null,
    "description": "# Miding\r\n\r\nThis program names '**miding**', an abbreviation of '**Midi Neuronal Generator**', \r\nwhich aims to generate listenable midi sequences, attempting to create fair scores.\r\n\r\nSincerely thanks for _**keras**_, the neuronal network model we have applied.\r\nIn this program, the model construction is two GRU layer and a Dense layer with the activation Softmax.\r\n### Download\r\n\r\nHere is our website:\r\n* https://github.com/JerrySkywolf/miding\r\n\r\nThis package could also be downloaded through PyPi by:\r\n\r\n`pip install miding`\r\n\r\nView at the webpage\r\n* https://pypi.org/project/miding\r\n\r\n### How to use the model?\r\n\r\nFirst, **COPY** the model files (*.keras) in the package path to your programme directory before call Predict!\r\n\r\nAnd then, for example, you could use a random seed:\r\n\r\n``from miding import Predict, Seed``\r\n\r\n``s = Seed(midi_file='example_seed.mid')``\r\n\r\n``Predict(seed=s.get_seed(),epoch=128, model_version=1751770203)``\r\n\r\n\r\n\r\n \r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A generator of midi score based on GRU.",
    "version": "3.2.0",
    "project_urls": {
        "DOWNLOAD": "https://github.com/JerrySkywolf/miding/releases",
        "Homepage": "https://github.com/JerrySkywolf/miding",
        "Issues": "https://github.com/JerrySkywolf/miding/issues"
    },
    "split_keywords": [
        "midi",
        " miding",
        " neuronal",
        " generate",
        " music",
        " jerry skywolf"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8c8a9ed7121c60ff963ce6018f2df13251e6408ca66be29c5e6f8fbb75ceb3fd",
                "md5": "ee634acb26161b3c1d91f568ea8b4c1f",
                "sha256": "e10fc5e23984497c92794546e23f6aa8e6cd50a3f543c6f5ea76414f68dd00e0"
            },
            "downloads": -1,
            "filename": "miding-3.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ee634acb26161b3c1d91f568ea8b4c1f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 93466,
            "upload_time": "2025-07-28T07:25:12",
            "upload_time_iso_8601": "2025-07-28T07:25:12.803357Z",
            "url": "https://files.pythonhosted.org/packages/8c/8a/9ed7121c60ff963ce6018f2df13251e6408ca66be29c5e6f8fbb75ceb3fd/miding-3.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "08565c1428976ea5a472b33752fe0e1820877dea7af1ac5f720a3e018d5388f6",
                "md5": "02647465ae082e7628215e3197d74ce8",
                "sha256": "43fbb005be5edc576a0f1fee91a3fe5bddb36061ae22dfa152875aeb3edfcd02"
            },
            "downloads": -1,
            "filename": "miding-3.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "02647465ae082e7628215e3197d74ce8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 95104,
            "upload_time": "2025-07-28T07:25:14",
            "upload_time_iso_8601": "2025-07-28T07:25:14.230106Z",
            "url": "https://files.pythonhosted.org/packages/08/56/5c1428976ea5a472b33752fe0e1820877dea7af1ac5f720a3e018d5388f6/miding-3.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-28 07:25:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JerrySkywolf",
    "github_project": "miding",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "miding"
}
        
Elapsed time: 1.33425s