miding


Namemiding JSON
Version 3.1.6 PyPI version JSON
download
home_pageNone
SummaryA generator of midi score based on GRU.
upload_time2025-07-13 06:23:38
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords midi miding neuronal generate music jerry skywolf
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Miding

This program names '**miding**', an abbreviation of '**Midi Neuronal Generator**', 
which aims to generate listenable midi sequences, attempting to create fair scores.

Sincerely thanks for _**keras**_, the neuronal network model we have applied.
In this program, the model construction is two GRU layer and a Dense layer with the activation Softmax.
### Download

Here is our website:
* https://github.com/JerrySkywolf/miding

This package could also be downloaded through PyPi by:

`pip install miding`

View at the webpage
* https://pypi.org/project/miding

### How to use the model?

For example, you could use a random seed:

``from miding import Predict, Seed, get_seed``

``Predict(seed=get_seed(), epoch=256, model_version=1751770203)``

or a defined seed:

``s = Seed(midi_file='example_seed.mid')``

``Predict(seed=s.get_seed(),epoch=128, model_version=1751770203)``



 

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "miding",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "midi, miding, neuronal, generate, music, Jerry Skywolf",
    "author": null,
    "author_email": "Jerry_Skywolf <jerryskywolf@outlook.com>",
    "download_url": "https://files.pythonhosted.org/packages/56/55/3d4fa01f537d42116978d3f95ed333b5df817a1941711504b60bfe4372af/miding-3.1.6.tar.gz",
    "platform": null,
    "description": "# Miding\r\n\r\nThis program names '**miding**', an abbreviation of '**Midi Neuronal Generator**', \r\nwhich aims to generate listenable midi sequences, attempting to create fair scores.\r\n\r\nSincerely thanks for _**keras**_, the neuronal network model we have applied.\r\nIn this program, the model construction is two GRU layer and a Dense layer with the activation Softmax.\r\n### Download\r\n\r\nHere is our website:\r\n* https://github.com/JerrySkywolf/miding\r\n\r\nThis package could also be downloaded through PyPi by:\r\n\r\n`pip install miding`\r\n\r\nView at the webpage\r\n* https://pypi.org/project/miding\r\n\r\n### How to use the model?\r\n\r\nFor example, you could use a random seed:\r\n\r\n``from miding import Predict, Seed, get_seed``\r\n\r\n``Predict(seed=get_seed(), epoch=256, model_version=1751770203)``\r\n\r\nor a defined seed:\r\n\r\n``s = Seed(midi_file='example_seed.mid')``\r\n\r\n``Predict(seed=s.get_seed(),epoch=128, model_version=1751770203)``\r\n\r\n\r\n\r\n \r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A generator of midi score based on GRU.",
    "version": "3.1.6",
    "project_urls": {
        "DOWNLOAD": "https://github.com/JerrySkywolf/miding/releases",
        "Homepage": "https://github.com/JerrySkywolf/miding",
        "Issues": "https://github.com/JerrySkywolf/miding/issues"
    },
    "split_keywords": [
        "midi",
        " miding",
        " neuronal",
        " generate",
        " music",
        " jerry skywolf"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "23a42198c424db63a6e7063d26c33bf3756525b156870a2db11755f9173cf185",
                "md5": "7fa262ec0edc0b3b95061f4ef99f4e9c",
                "sha256": "b66ae3bd5b0048be8d47075394c8b5e14c19887d2e728c290fffdd6a2c38eb24"
            },
            "downloads": -1,
            "filename": "miding-3.1.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7fa262ec0edc0b3b95061f4ef99f4e9c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 18794,
            "upload_time": "2025-07-13T06:23:35",
            "upload_time_iso_8601": "2025-07-13T06:23:35.352005Z",
            "url": "https://files.pythonhosted.org/packages/23/a4/2198c424db63a6e7063d26c33bf3756525b156870a2db11755f9173cf185/miding-3.1.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "56553d4fa01f537d42116978d3f95ed333b5df817a1941711504b60bfe4372af",
                "md5": "fea96f34ca768ecd2fd0c1c57443d5f7",
                "sha256": "dd896be27dcdd06547e3dc12e14fa61e686c86806cd469107801d5577e3f2a81"
            },
            "downloads": -1,
            "filename": "miding-3.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "fea96f34ca768ecd2fd0c1c57443d5f7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 18376,
            "upload_time": "2025-07-13T06:23:38",
            "upload_time_iso_8601": "2025-07-13T06:23:38.217578Z",
            "url": "https://files.pythonhosted.org/packages/56/55/3d4fa01f537d42116978d3f95ed333b5df817a1941711504b60bfe4372af/miding-3.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-13 06:23:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JerrySkywolf",
    "github_project": "miding",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "miding"
}
        
Elapsed time: 0.77498s