# Mid+One ![tests](https://github.com/microprediction/midone/actions/workflows/tests.yml/badge.svg)
Utilities to help build `Attackers` that detect small departures from martingality in time-series.
### Contest entry notebook examples
Play the game at [CrunchDAO.com](https://www.crunchdao.com/)! You might win some cash or even have ongoing upside.
| Contest notebook | Description |
| --- | --- |
| [Mean reversion attacker](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/mean_reversion_attacker/mean_reversion_attacker.ipynb) | Illustrates use of the `Attacker` class|
| [Momentum attacker](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/momentum_attacker/momentum_attacker.ipynb) | Illustrates use of running calculations |
| [Regression Attacker](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/regression_attacker/regression_attacker.ipynb) | Illustrates running regression pattern |
### About
This package is intended to make life simpler for those participating in an ongoing tournament at [CrunchDAO.com](https://www.crunchdao.com), although it hopefully has independent interest. For instance, you might build on `Attacker` or examples herein to help find signal in your model residuals.
- See the README in [attacker.md](https://github.com/microprediction/midone/blob/main/midone/attackers/attacker.md).
- It's also highly recommended to read the [FAQ.md](https://github.com/microprediction/midone/blob/main/midone/attackers/FAQ.md).
### Install
Stable:
pip install midone
Latest:
pip install git+https://github.com/microprediction/midone.git
### Getting help
See the [discord channel](https://discord.gg/NuqJTcYQ2J) and [CrunchDAO.com](https://www.crunchdao.com).
Raw data
{
"_id": null,
"home_page": "https://github.com/microprediction/midone",
"name": "midone",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "microprediction",
"author_email": "peter.cotton@microprediction.com",
"download_url": "https://files.pythonhosted.org/packages/ed/8c/970e29e8bc7eaa8df254fbdf0309f15e5fc84fe35c97a7d72825bff2e44b/midone-1.0.4.tar.gz",
"platform": null,
"description": "# Mid+One ![tests](https://github.com/microprediction/midone/actions/workflows/tests.yml/badge.svg)\n\nUtilities to help build `Attackers` that detect small departures from martingality in time-series. \n\n### Contest entry notebook examples\n\nPlay the game at [CrunchDAO.com](https://www.crunchdao.com/)! You might win some cash or even have ongoing upside. \n\n| Contest notebook | Description |\n| --- | --- |\n| [Mean reversion attacker](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/mean_reversion_attacker/mean_reversion_attacker.ipynb) | Illustrates use of the `Attacker` class|\n| [Momentum attacker](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/momentum_attacker/momentum_attacker.ipynb) | Illustrates use of running calculations |\n| [Regression Attacker](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/regression_attacker/regression_attacker.ipynb) | Illustrates running regression pattern |\n\n\n### About\nThis package is intended to make life simpler for those participating in an ongoing tournament at [CrunchDAO.com](https://www.crunchdao.com), although it hopefully has independent interest. For instance, you might build on `Attacker` or examples herein to help find signal in your model residuals. \n\n - See the README in [attacker.md](https://github.com/microprediction/midone/blob/main/midone/attackers/attacker.md). \n - It's also highly recommended to read the [FAQ.md](https://github.com/microprediction/midone/blob/main/midone/attackers/FAQ.md).\n\n\n### Install \nStable:\n\n pip install midone \n\nLatest:\n\n pip install git+https://github.com/microprediction/midone.git\n \n### Getting help\n\nSee the [discord channel](https://discord.gg/NuqJTcYQ2J) and [CrunchDAO.com](https://www.crunchdao.com). \n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Online autonomous time series prediction of near martingales",
"version": "1.0.4",
"project_urls": {
"Homepage": "https://github.com/microprediction/midone"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9eb7e971ebf2e4dbe9a4da6d6e90e45d758cc210196d7dd7ffbd6782aef01330",
"md5": "307f9686b755f1227a0452a05067f37d",
"sha256": "7b9b403affce436bd7757b47a9dbffe338a14585f4762fdb00286b1af5a6f442"
},
"downloads": -1,
"filename": "midone-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "307f9686b755f1227a0452a05067f37d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 26938,
"upload_time": "2024-10-25T23:03:20",
"upload_time_iso_8601": "2024-10-25T23:03:20.934683Z",
"url": "https://files.pythonhosted.org/packages/9e/b7/e971ebf2e4dbe9a4da6d6e90e45d758cc210196d7dd7ffbd6782aef01330/midone-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ed8c970e29e8bc7eaa8df254fbdf0309f15e5fc84fe35c97a7d72825bff2e44b",
"md5": "25cb75aa6180a8f0f9441b2325283fda",
"sha256": "a00aec0b720c721a955ffb9966fe7b4ba60fa6b1fa7409f4fc56085351610062"
},
"downloads": -1,
"filename": "midone-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "25cb75aa6180a8f0f9441b2325283fda",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 19072,
"upload_time": "2024-10-25T23:03:21",
"upload_time_iso_8601": "2024-10-25T23:03:21.880090Z",
"url": "https://files.pythonhosted.org/packages/ed/8c/970e29e8bc7eaa8df254fbdf0309f15e5fc84fe35c97a7d72825bff2e44b/midone-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-25 23:03:21",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "microprediction",
"github_project": "midone",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "midone"
}