# miml: Multi-Instance Multi-Label Learning Library for Python
The aim of the library is to ease the development, testing, and comparison of classification algorithms for multi-instance multi-label learning (MIML).
## Table of Contents
- [Installation](#installation)
- [Documentation](#documentation)
- [Usage](#usage)
- [License](#license)
### Installation
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install miml.
```bash
$ pip install mimllearning
```
#### Requirements
The requirement packages for miml library are: numpy and scikit-learn.
Installing miml with the package manager does not install the package dependencies.
So install them with the package manager manually if not already downloaded.
$ pip install numpy
$ pip install scikit-learn
### Documentation
We can find the documentation of the project in this link: [Documentation](https://p82maavd.github.io/MIML/)
### Usage
#### Datasets
``` python
from miml.data.load_datasets import load_dataset
dataset_train = load_dataset("miml_birds_random_80train.arff", from_library=True)
dataset_test = load_dataset("C:/Users/Damián/Desktop/miml_birds_random_20test.arff")
```
#### Classifier
``` python
from miml.classifier import MIMLtoMIBRClassifier, AllPositiveAPRClassifier
classifier_mi = MIMLtoMIBRClassifier(AllPositiveAPRClassifier())
classifier_mi.fit(dataset_train)
results_mi=classifier_mi.evaluate(dataset_test)
probs_mi = classifier_mi.predict_proba(dataset_test)
```
#### Report
``` python
from miml.report import Report
report = Report(results_mi, probs_mi, dataset_test)
report.to_string()
print("")
report.to_csv()
```
### License
MIML library is released under the GNU General Public License [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html).
Raw data
{
"_id": null,
"home_page": null,
"name": "mimllearning",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "data-science, machine-learning, miml, multi-instance, multilabel, python",
"author": null,
"author_email": "Damian Martinez <damianmartinezavila@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/95/39/663a9a31ad0fe0e94f91975ea65a862348b09646d017ddf5b498b7f8a366/mimllearning-1.0.11.tar.gz",
"platform": null,
"description": "# miml: Multi-Instance Multi-Label Learning Library for Python\nThe aim of the library is to ease the development, testing, and comparison of classification algorithms for multi-instance multi-label learning (MIML). \n\n## Table of Contents\n\n- [Installation](#installation)\n- [Documentation](#documentation)\n- [Usage](#usage)\n- [License](#license)\n\n### Installation\n\nUse the package manager [pip](https://pip.pypa.io/en/stable/) to install miml.\n\n```bash\n$ pip install mimllearning\n```\n#### Requirements\nThe requirement packages for miml library are: numpy and scikit-learn.\nInstalling miml with the package manager does not install the package dependencies.\nSo install them with the package manager manually if not already downloaded.\n\n $ pip install numpy\n $ pip install scikit-learn\n\n### Documentation\n\nWe can find the documentation of the project in this link: [Documentation](https://p82maavd.github.io/MIML/)\n\n\n### Usage\n\n\n#### Datasets\n\n``` python\nfrom miml.data.load_datasets import load_dataset\n\ndataset_train = load_dataset(\"miml_birds_random_80train.arff\", from_library=True)\ndataset_test = load_dataset(\"C:/Users/Dami\u00e1n/Desktop/miml_birds_random_20test.arff\")\n```\n\n#### Classifier\n\n``` python\nfrom miml.classifier import MIMLtoMIBRClassifier, AllPositiveAPRClassifier\n\nclassifier_mi = MIMLtoMIBRClassifier(AllPositiveAPRClassifier())\nclassifier_mi.fit(dataset_train)\nresults_mi=classifier_mi.evaluate(dataset_test)\nprobs_mi = classifier_mi.predict_proba(dataset_test)\n```\n\n#### Report\n\n``` python\nfrom miml.report import Report\n\nreport = Report(results_mi, probs_mi, dataset_test)\nreport.to_string()\nprint(\"\")\nreport.to_csv()\n```\n\n### License\nMIML library is released under the GNU General Public License [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html).\n",
"bugtrack_url": null,
"license": null,
"summary": "MIML Learning Library",
"version": "1.0.11",
"project_urls": {
"Homepage": "https://github.com/p82maavd/miml"
},
"split_keywords": [
"data-science",
" machine-learning",
" miml",
" multi-instance",
" multilabel",
" python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4cc2d64974681abab359ccb6439af2b7b940ce8bee507e98466e6ac962643fe9",
"md5": "20f1af0363c3590c4bcb1b509110e7d0",
"sha256": "943b0953be17e6617f99f11ac003745a181df099f310cea758c838f35c113975"
},
"downloads": -1,
"filename": "mimllearning-1.0.11-py3-none-any.whl",
"has_sig": false,
"md5_digest": "20f1af0363c3590c4bcb1b509110e7d0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 966071,
"upload_time": "2024-06-03T00:26:31",
"upload_time_iso_8601": "2024-06-03T00:26:31.439308Z",
"url": "https://files.pythonhosted.org/packages/4c/c2/d64974681abab359ccb6439af2b7b940ce8bee507e98466e6ac962643fe9/mimllearning-1.0.11-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9539663a9a31ad0fe0e94f91975ea65a862348b09646d017ddf5b498b7f8a366",
"md5": "aae2a67cf2f2a37659d83b0f4259a8cf",
"sha256": "36be49ecf7682e5ad8e535f593ffdf9eb4f186efb7e59c16dad38add27ab07be"
},
"downloads": -1,
"filename": "mimllearning-1.0.11.tar.gz",
"has_sig": false,
"md5_digest": "aae2a67cf2f2a37659d83b0f4259a8cf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 2909982,
"upload_time": "2024-06-03T00:26:35",
"upload_time_iso_8601": "2024-06-03T00:26:35.693506Z",
"url": "https://files.pythonhosted.org/packages/95/39/663a9a31ad0fe0e94f91975ea65a862348b09646d017ddf5b498b7f8a366/mimllearning-1.0.11.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-03 00:26:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "p82maavd",
"github_project": "miml",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mimllearning"
}