mimllearning


Namemimllearning JSON
Version 1.0.11 PyPI version JSON
download
home_pageNone
SummaryMIML Learning Library
upload_time2024-06-03 00:26:35
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords data-science machine-learning miml multi-instance multilabel python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # miml: Multi-Instance Multi-Label Learning Library for Python
The aim of the library is to ease the development, testing, and comparison of classification algorithms for multi-instance multi-label learning (MIML). 

## Table of Contents

- [Installation](#installation)
- [Documentation](#documentation)
- [Usage](#usage)
- [License](#license)

### Installation

Use the package manager [pip](https://pip.pypa.io/en/stable/) to install miml.

```bash
$ pip install mimllearning
```
#### Requirements
The requirement packages for miml library are: numpy and scikit-learn.
Installing miml with the package manager does not install the package dependencies.
So install them with the package manager manually if not already downloaded.

    $ pip install numpy
    $ pip install scikit-learn

### Documentation

We can find the documentation of the project in this link: [Documentation](https://p82maavd.github.io/MIML/)


### Usage


#### Datasets

``` python
from miml.data.load_datasets import load_dataset

dataset_train = load_dataset("miml_birds_random_80train.arff", from_library=True)
dataset_test = load_dataset("C:/Users/Damián/Desktop/miml_birds_random_20test.arff")
```

#### Classifier

``` python
from miml.classifier import MIMLtoMIBRClassifier, AllPositiveAPRClassifier

classifier_mi = MIMLtoMIBRClassifier(AllPositiveAPRClassifier())
classifier_mi.fit(dataset_train)
results_mi=classifier_mi.evaluate(dataset_test)
probs_mi = classifier_mi.predict_proba(dataset_test)
```

#### Report

``` python
from miml.report import Report

report = Report(results_mi, probs_mi, dataset_test)
report.to_string()
print("")
report.to_csv()
```

### License
MIML library is released under the GNU General Public License [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mimllearning",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "data-science, machine-learning, miml, multi-instance, multilabel, python",
    "author": null,
    "author_email": "Damian Martinez <damianmartinezavila@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/95/39/663a9a31ad0fe0e94f91975ea65a862348b09646d017ddf5b498b7f8a366/mimllearning-1.0.11.tar.gz",
    "platform": null,
    "description": "# miml: Multi-Instance Multi-Label Learning Library for Python\nThe aim of the library is to ease the development, testing, and comparison of classification algorithms for multi-instance multi-label learning (MIML). \n\n## Table of Contents\n\n- [Installation](#installation)\n- [Documentation](#documentation)\n- [Usage](#usage)\n- [License](#license)\n\n### Installation\n\nUse the package manager [pip](https://pip.pypa.io/en/stable/) to install miml.\n\n```bash\n$ pip install mimllearning\n```\n#### Requirements\nThe requirement packages for miml library are: numpy and scikit-learn.\nInstalling miml with the package manager does not install the package dependencies.\nSo install them with the package manager manually if not already downloaded.\n\n    $ pip install numpy\n    $ pip install scikit-learn\n\n### Documentation\n\nWe can find the documentation of the project in this link: [Documentation](https://p82maavd.github.io/MIML/)\n\n\n### Usage\n\n\n#### Datasets\n\n``` python\nfrom miml.data.load_datasets import load_dataset\n\ndataset_train = load_dataset(\"miml_birds_random_80train.arff\", from_library=True)\ndataset_test = load_dataset(\"C:/Users/Dami\u00e1n/Desktop/miml_birds_random_20test.arff\")\n```\n\n#### Classifier\n\n``` python\nfrom miml.classifier import MIMLtoMIBRClassifier, AllPositiveAPRClassifier\n\nclassifier_mi = MIMLtoMIBRClassifier(AllPositiveAPRClassifier())\nclassifier_mi.fit(dataset_train)\nresults_mi=classifier_mi.evaluate(dataset_test)\nprobs_mi = classifier_mi.predict_proba(dataset_test)\n```\n\n#### Report\n\n``` python\nfrom miml.report import Report\n\nreport = Report(results_mi, probs_mi, dataset_test)\nreport.to_string()\nprint(\"\")\nreport.to_csv()\n```\n\n### License\nMIML library is released under the GNU General Public License [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "MIML Learning Library",
    "version": "1.0.11",
    "project_urls": {
        "Homepage": "https://github.com/p82maavd/miml"
    },
    "split_keywords": [
        "data-science",
        " machine-learning",
        " miml",
        " multi-instance",
        " multilabel",
        " python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4cc2d64974681abab359ccb6439af2b7b940ce8bee507e98466e6ac962643fe9",
                "md5": "20f1af0363c3590c4bcb1b509110e7d0",
                "sha256": "943b0953be17e6617f99f11ac003745a181df099f310cea758c838f35c113975"
            },
            "downloads": -1,
            "filename": "mimllearning-1.0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "20f1af0363c3590c4bcb1b509110e7d0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 966071,
            "upload_time": "2024-06-03T00:26:31",
            "upload_time_iso_8601": "2024-06-03T00:26:31.439308Z",
            "url": "https://files.pythonhosted.org/packages/4c/c2/d64974681abab359ccb6439af2b7b940ce8bee507e98466e6ac962643fe9/mimllearning-1.0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9539663a9a31ad0fe0e94f91975ea65a862348b09646d017ddf5b498b7f8a366",
                "md5": "aae2a67cf2f2a37659d83b0f4259a8cf",
                "sha256": "36be49ecf7682e5ad8e535f593ffdf9eb4f186efb7e59c16dad38add27ab07be"
            },
            "downloads": -1,
            "filename": "mimllearning-1.0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "aae2a67cf2f2a37659d83b0f4259a8cf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 2909982,
            "upload_time": "2024-06-03T00:26:35",
            "upload_time_iso_8601": "2024-06-03T00:26:35.693506Z",
            "url": "https://files.pythonhosted.org/packages/95/39/663a9a31ad0fe0e94f91975ea65a862348b09646d017ddf5b498b7f8a366/mimllearning-1.0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-03 00:26:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "p82maavd",
    "github_project": "miml",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mimllearning"
}
        
Elapsed time: 2.92679s