=====================================
Mind Foundry Analyze — Python Client
=====================================
Mind Foundry Analyze is a Data Science workbench developed by Mind Foundry.
This Python client makes it easier to interact with the API and integrate with other Python libraries.
Quick start::
from mindfoundry.client.analyze import create_project_api_client
client = create_project_api_client(YOUR_INSTANCE_URL, YOUR_CLIENT_ID, YOUR_CLIENT_SECRET)
with open('./your-training-data.csv', 'rb') as data:
data_set_id = client.create_file_data_set(data, 'Your Data Set Name', 'Your description')
model_id = client.create_classification_model('Your Model Name', data_set_id, 'Target Column')
with open('./your-prediction-data.csv', 'rb') as other_data:
other_data_set_id = client.create_file_data_set(other_data, 'Prediction Data')
prediction_id = client.create_prediction(model_id, other_data_set_id, 'Your Prediction Name')
client.download_prediction_as_csv(prediction_id, './your-output-file.csv')
You can also create a data set from a Pandas DataFrame, or an array of dicts, or an array of arrays::
data_dicts = [{'a': 1, 'b': 2}, {'a': 3}, {'b': 4}]
client.create_file_data_set(data_dicts, 'Array of dicts')
df = pd.DataFrame(data_dicts)
client.create_file_data_set(df, 'Pandas DataFrame')
data_arrays = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
client.create_file_data_set(data_arrays, 'Array of arrays')
Raw data
{
"_id": null,
"home_page": "https://www.mindfoundry.ai/platform",
"name": "mindfoundry.client.analyze",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Mind Foundry Ltd",
"author_email": "support@mindfoundry.ai",
"download_url": "https://files.pythonhosted.org/packages/1f/73/281973266c38857c7e47457a29e0a3951a2746bb66d7845073668706d6f4/mindfoundry.client.analyze-1.21.0.tar.gz",
"platform": null,
"description": "=====================================\nMind Foundry Analyze \u2014 Python Client\n=====================================\n\nMind Foundry Analyze is a Data Science workbench developed by Mind Foundry.\n\nThis Python client makes it easier to interact with the API and integrate with other Python libraries.\n\nQuick start::\n\n from mindfoundry.client.analyze import create_project_api_client\n\n client = create_project_api_client(YOUR_INSTANCE_URL, YOUR_CLIENT_ID, YOUR_CLIENT_SECRET)\n with open('./your-training-data.csv', 'rb') as data:\n data_set_id = client.create_file_data_set(data, 'Your Data Set Name', 'Your description')\n\n model_id = client.create_classification_model('Your Model Name', data_set_id, 'Target Column')\n\n with open('./your-prediction-data.csv', 'rb') as other_data:\n other_data_set_id = client.create_file_data_set(other_data, 'Prediction Data')\n\n prediction_id = client.create_prediction(model_id, other_data_set_id, 'Your Prediction Name')\n\n client.download_prediction_as_csv(prediction_id, './your-output-file.csv')\n\n\nYou can also create a data set from a Pandas DataFrame, or an array of dicts, or an array of arrays::\n\n data_dicts = [{'a': 1, 'b': 2}, {'a': 3}, {'b': 4}]\n client.create_file_data_set(data_dicts, 'Array of dicts')\n\n df = pd.DataFrame(data_dicts)\n client.create_file_data_set(df, 'Pandas DataFrame')\n\n data_arrays = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]\n client.create_file_data_set(data_arrays, 'Array of arrays')\n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Mind Foundry Analyze Python Client",
"version": "1.21.0",
"project_urls": {
"Homepage": "https://www.mindfoundry.ai/platform"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7a583d72b89b3a8ef9c32543357ece31dcafc0475ca80c296ed16a3f66f7d0ab",
"md5": "b2e5db64f51fad48d9d7ae036a75cab4",
"sha256": "e282b0a7bd51769b096f200cfaf48c258b489363f5e4b50272854d294cbdcc9f"
},
"downloads": -1,
"filename": "mindfoundry.client.analyze-1.21.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b2e5db64f51fad48d9d7ae036a75cab4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 238610,
"upload_time": "2024-03-19T14:45:55",
"upload_time_iso_8601": "2024-03-19T14:45:55.843482Z",
"url": "https://files.pythonhosted.org/packages/7a/58/3d72b89b3a8ef9c32543357ece31dcafc0475ca80c296ed16a3f66f7d0ab/mindfoundry.client.analyze-1.21.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1f73281973266c38857c7e47457a29e0a3951a2746bb66d7845073668706d6f4",
"md5": "ef2e2d0f192b648be7ebb2662b27e429",
"sha256": "69e43cb523232a48c47c20acc5e8d4091f72975f618f59ce21588afe7c487249"
},
"downloads": -1,
"filename": "mindfoundry.client.analyze-1.21.0.tar.gz",
"has_sig": false,
"md5_digest": "ef2e2d0f192b648be7ebb2662b27e429",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 95579,
"upload_time": "2024-03-19T14:45:57",
"upload_time_iso_8601": "2024-03-19T14:45:57.571032Z",
"url": "https://files.pythonhosted.org/packages/1f/73/281973266c38857c7e47457a29e0a3951a2746bb66d7845073668706d6f4/mindfoundry.client.analyze-1.21.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-19 14:45:57",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "mindfoundry.client.analyze"
}