mixturemapping


Namemixturemapping JSON
Version 0.5.5 PyPI version JSON
download
home_pagehttps://vk.github.io/mixturemapping-doc/
SummaryNone
upload_time2024-05-21 13:10:46
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords tensorflow distributions gaussian mixtures
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MixtureMapping

[![Documentation](https://github.com/VK/dash-express-components/workflows/Publish%20release/badge.svg)](https://vk.github.io/mixturemapping-doc)
[![PyPI version](https://badge.fury.io/py/mixturemapping.svg)](https://badge.fury.io/py/mixturemapping)

Train Gaussian Mixture Mappings


## Provides:
  1. Layers to build tensorflow models to map Gaussian mixtures
  2. Tools to compute yield values of Gaussian mixtures in complex binning schemes

## Example
  
    import mixturemapping as mm  
    import tensorflow as tf

    inMeans = tf.keras.Input(shape=(mixN, inputMixM), name="Means", dtype=dataType)
    inStdDevs = tf.keras.Input(shape=(mixN, inputMixM), name="StdDevs", dtype=dataType)
    inWeight = tf.keras.Input(shape=(mixN), name="Weights", dtype=dataType)

    mapModel = tf.keras.Sequential()
    mapModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
    mapModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
    mapModel.add( tf.keras.layers.Dense(outputMixM))
    y = mapModel(inMeans)

    deltaModel = tf.keras.Sequential()
    deltaModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
    deltaModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
    deltaModel.add( tf.keras.layers.Dense(outputMixM))
    yDelta = deltaModel(inMeans)

    covALayer = mm.layers.TrainableCovMatrix(outputMixM, name="CovA")
    covA = covALayer(inMeans)

    mapLayer = mm.layers.GeneralMapping(outputMixM, name="Mapping", dtype=dataType)
    newDist = mapLayer({'means': inMeans, 'y':y, 'yDelta':yDelta, 'stdDevs': inStdDevs, 'weights': inWeight, 'covA': covA})

    distLayer = mm.layers.Distribution(dtype=dataType, regularize_cov_epsilon=0.95)
    dist = distLayer(newDist)

### Developement
```
$ py -m venv env
$ .\env\Scripts\activate
$ pip install -r requirements.txt
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://vk.github.io/mixturemapping-doc/",
    "name": "mixturemapping",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "tensorflow distributions gaussian mixtures",
    "author": null,
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# MixtureMapping\n\n[![Documentation](https://github.com/VK/dash-express-components/workflows/Publish%20release/badge.svg)](https://vk.github.io/mixturemapping-doc)\n[![PyPI version](https://badge.fury.io/py/mixturemapping.svg)](https://badge.fury.io/py/mixturemapping)\n\nTrain Gaussian Mixture Mappings\n\n\n## Provides:\n  1. Layers to build tensorflow models to map Gaussian mixtures\n  2. Tools to compute yield values of Gaussian mixtures in complex binning schemes\n\n## Example\n  \n    import mixturemapping as mm  \n    import tensorflow as tf\n\n    inMeans = tf.keras.Input(shape=(mixN, inputMixM), name=\"Means\", dtype=dataType)\n    inStdDevs = tf.keras.Input(shape=(mixN, inputMixM), name=\"StdDevs\", dtype=dataType)\n    inWeight = tf.keras.Input(shape=(mixN), name=\"Weights\", dtype=dataType)\n\n    mapModel = tf.keras.Sequential()\n    mapModel.add( tf.keras.layers.Dense(40, activation=\"relu\", kernel_regularizer=regularizers.l2(0.001)) )\n    mapModel.add( tf.keras.layers.Dense(40, activation=\"relu\", kernel_regularizer=regularizers.l2(0.001)) )\n    mapModel.add( tf.keras.layers.Dense(outputMixM))\n    y = mapModel(inMeans)\n\n    deltaModel = tf.keras.Sequential()\n    deltaModel.add( tf.keras.layers.Dense(40, activation=\"relu\", kernel_regularizer=regularizers.l2(0.001)) )\n    deltaModel.add( tf.keras.layers.Dense(40, activation=\"relu\", kernel_regularizer=regularizers.l2(0.001)) )\n    deltaModel.add( tf.keras.layers.Dense(outputMixM))\n    yDelta = deltaModel(inMeans)\n\n    covALayer = mm.layers.TrainableCovMatrix(outputMixM, name=\"CovA\")\n    covA = covALayer(inMeans)\n\n    mapLayer = mm.layers.GeneralMapping(outputMixM, name=\"Mapping\", dtype=dataType)\n    newDist = mapLayer({'means': inMeans, 'y':y, 'yDelta':yDelta, 'stdDevs': inStdDevs, 'weights': inWeight, 'covA': covA})\n\n    distLayer = mm.layers.Distribution(dtype=dataType, regularize_cov_epsilon=0.95)\n    dist = distLayer(newDist)\n\n### Developement\n```\n$ py -m venv env\n$ .\\env\\Scripts\\activate\n$ pip install -r requirements.txt\n```\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "0.5.5",
    "project_urls": {
        "Homepage": "https://vk.github.io/mixturemapping-doc/"
    },
    "split_keywords": [
        "tensorflow",
        "distributions",
        "gaussian",
        "mixtures"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "518b475061f4f429422f8692cb5bc153f4e6c01a9330e7eb1a011636de691caa",
                "md5": "a3d0cf6f97f9150137f0e21dffeb63a0",
                "sha256": "688f513978677fa5955cdc5cce11ca7db54b8617cc482d4fe0dc5de0f0d5d098"
            },
            "downloads": -1,
            "filename": "mixturemapping-0.5.5-py310-none-any.whl",
            "has_sig": false,
            "md5_digest": "a3d0cf6f97f9150137f0e21dffeb63a0",
            "packagetype": "bdist_wheel",
            "python_version": "py310",
            "requires_python": ">=3.7",
            "size": 21494,
            "upload_time": "2024-05-21T13:10:46",
            "upload_time_iso_8601": "2024-05-21T13:10:46.221407Z",
            "url": "https://files.pythonhosted.org/packages/51/8b/475061f4f429422f8692cb5bc153f4e6c01a9330e7eb1a011636de691caa/mixturemapping-0.5.5-py310-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ab138a434f90f9dbd8b0375133eaa7bd9e5881698094866ff260059d432ea046",
                "md5": "691e5d8b23bce5bf029420571cd62315",
                "sha256": "9bbdc6c5a8e369ea3e1163d36cca64fb45e52e02a3c0e78d80e9a5e7f453c0d5"
            },
            "downloads": -1,
            "filename": "mixturemapping-0.5.5-py311-none-any.whl",
            "has_sig": false,
            "md5_digest": "691e5d8b23bce5bf029420571cd62315",
            "packagetype": "bdist_wheel",
            "python_version": "py311",
            "requires_python": ">=3.7",
            "size": 21495,
            "upload_time": "2024-05-21T13:10:47",
            "upload_time_iso_8601": "2024-05-21T13:10:47.460701Z",
            "url": "https://files.pythonhosted.org/packages/ab/13/8a434f90f9dbd8b0375133eaa7bd9e5881698094866ff260059d432ea046/mixturemapping-0.5.5-py311-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47ef04a94fb920f81448eb030adaa93e3118523554d106743b461668062b6b9e",
                "md5": "0b4044487817d243e4711c4f7ac84f0d",
                "sha256": "e1b02a01fddc4591f43ca816b8f362b135f4c7d97e26ff7d6d9ead2e920e317b"
            },
            "downloads": -1,
            "filename": "mixturemapping-0.5.5-py39-none-any.whl",
            "has_sig": false,
            "md5_digest": "0b4044487817d243e4711c4f7ac84f0d",
            "packagetype": "bdist_wheel",
            "python_version": "py39",
            "requires_python": ">=3.7",
            "size": 21521,
            "upload_time": "2024-05-21T13:10:48",
            "upload_time_iso_8601": "2024-05-21T13:10:48.721512Z",
            "url": "https://files.pythonhosted.org/packages/47/ef/04a94fb920f81448eb030adaa93e3118523554d106743b461668062b6b9e/mixturemapping-0.5.5-py39-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-21 13:10:46",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mixturemapping"
}
        
Elapsed time: 9.66872s