## ``mkl_random`` -- a NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality
[![Conda package using conda-forge](https://github.com/IntelPython/mkl_random/actions/workflows/conda-package-cf.yml/badge.svg)](https://github.com/IntelPython/mkl_random/actions/workflows/conda-package-cf.yml)
`mkl_random` has started as Intel (R) Distribution for Python optimizations for NumPy.
Per NumPy's community suggestions, voiced in https://github.com/numpy/numpy/pull/8209, it is being released as a
stand-alone package.
Prebuilt `mkl_random` can be installed into conda environment from Intel's channel:
```
conda install -c https://software.repos.intel.com/python/conda mkl_random
```
or from conda forge channel:
```
conda install -c conda-forge mkl_random
```
---
To install mkl_random Pypi package please use following command:
```
python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random
```
If command above installs NumPy package from the Pypi, please use following command to install Intel optimized NumPy wheel package from Intel Pypi Cloud:
```
python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random numpy==<numpy_version>
```
Where `<numpy_version>` should be the latest version from https://software.repos.intel.com/python/conda/
---
`mkl_random` is not fixed-seed backward compatible drop-in replacement for `numpy.random`, meaning that it implements sampling from the same distributions as `numpy.random`.
For distributions directly supported in Intel (R) Math Kernel Library (MKL), `method` keyword is supported:
```
mkl_random.standard_normal(size=(10**5, 10**3), method='BoxMuller')
```
Additionally, `mkl_random` exposes different basic random number generation algorithms available in MKL. For example to use `SFMT19937` use
```
mkl_random.RandomState(77777, brng='SFMT19937')
```
For generator families, such that `MT2203` and Wichmann-Hill, a particular member of the family can be chosen by specifying ``brng=('WH', 3)``, etc.
The list of supported by `mkl_random.RandomState` constructor `brng` keywords is as follows:
* 'MT19937'
* 'SFMT19937'
* 'WH' or ('WH', id)
* 'MT2203' or ('MT2203', id)
* 'MCG31'
* 'R250'
* 'MRG32K3A'
* 'MCG59'
* 'PHILOX4X32X10'
* 'NONDETERM'
* 'ARS5'
Raw data
{
"_id": null,
"home_page": "http://github.com/IntelPython/mkl_random",
"name": "mkl-random",
"maintainer": "Intel Corp.",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "scripting@intel.com",
"keywords": "MKL, VSL, true randomness, pseudorandomness, Philox, MT-19937, SFMT-19937, MT-2203, ARS-5, R-250, MCG-31",
"author": "Intel Corporation",
"author_email": null,
"download_url": "http://github.com/IntelPython/mkl_random",
"platform": "Windows",
"description": "## ``mkl_random`` -- a NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality\r\n[![Conda package using conda-forge](https://github.com/IntelPython/mkl_random/actions/workflows/conda-package-cf.yml/badge.svg)](https://github.com/IntelPython/mkl_random/actions/workflows/conda-package-cf.yml)\r\n\r\n`mkl_random` has started as Intel (R) Distribution for Python optimizations for NumPy.\r\n\r\nPer NumPy's community suggestions, voiced in https://github.com/numpy/numpy/pull/8209, it is being released as a\r\nstand-alone package.\r\n\r\nPrebuilt `mkl_random` can be installed into conda environment from Intel's channel:\r\n\r\n```\r\n conda install -c https://software.repos.intel.com/python/conda mkl_random\r\n```\r\n\r\nor from conda forge channel:\r\n\r\n```\r\n conda install -c conda-forge mkl_random\r\n```\r\n\r\n---\r\n\r\nTo install mkl_random Pypi package please use following command:\r\n\r\n```\r\n python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random\r\n```\r\n\r\nIf command above installs NumPy package from the Pypi, please use following command to install Intel optimized NumPy wheel package from Intel Pypi Cloud:\r\n\r\n```\r\n python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random numpy==<numpy_version>\r\n```\r\n\r\nWhere `<numpy_version>` should be the latest version from https://software.repos.intel.com/python/conda/\r\n\r\n---\r\n\r\n`mkl_random` is not fixed-seed backward compatible drop-in replacement for `numpy.random`, meaning that it implements sampling from the same distributions as `numpy.random`.\r\n\r\nFor distributions directly supported in Intel (R) Math Kernel Library (MKL), `method` keyword is supported:\r\n\r\n```\r\n mkl_random.standard_normal(size=(10**5, 10**3), method='BoxMuller')\r\n```\r\n\r\nAdditionally, `mkl_random` exposes different basic random number generation algorithms available in MKL. For example to use `SFMT19937` use\r\n\r\n```\r\n mkl_random.RandomState(77777, brng='SFMT19937')\r\n```\r\n\r\nFor generator families, such that `MT2203` and Wichmann-Hill, a particular member of the family can be chosen by specifying ``brng=('WH', 3)``, etc.\r\n\r\nThe list of supported by `mkl_random.RandomState` constructor `brng` keywords is as follows:\r\n\r\n * 'MT19937'\r\n * 'SFMT19937'\r\n * 'WH' or ('WH', id)\r\n * 'MT2203' or ('MT2203', id)\r\n * 'MCG31'\r\n * 'R250'\r\n * 'MRG32K3A'\r\n * 'MCG59'\r\n * 'PHILOX4X32X10'\r\n * 'NONDETERM'\r\n * 'ARS5'\r\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality",
"version": "1.2.8",
"project_urls": {
"Download": "http://github.com/IntelPython/mkl_random",
"Homepage": "http://github.com/IntelPython/mkl_random"
},
"split_keywords": [
"mkl",
" vsl",
" true randomness",
" pseudorandomness",
" philox",
" mt-19937",
" sfmt-19937",
" mt-2203",
" ars-5",
" r-250",
" mcg-31"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c83cab6db8f48208453234f3bd48ad69344739fced35d4c0d022939ae4b2fec3",
"md5": "d0169aa62d74e5820aad04f8c56fbea8",
"sha256": "bfca77f997226bdae61455143f4f4d3b40c5384b58f8dff6c73fba56f3cece7b"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "d0169aa62d74e5820aad04f8c56fbea8",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 3888937,
"upload_time": "2024-10-29T17:07:16",
"upload_time_iso_8601": "2024-10-29T17:07:16.159160Z",
"url": "https://files.pythonhosted.org/packages/c8/3c/ab6db8f48208453234f3bd48ad69344739fced35d4c0d022939ae4b2fec3/mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "deb3de33be593f7516e1c370bc197e487619e5fc12268d8c05248c1d3ba20f3d",
"md5": "f6056227c86bf784cefa8fc996723623",
"sha256": "abc7e00ea815387934565d8cc4433b7e7bb43cfaa10bbac447a7d310439e088f"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "f6056227c86bf784cefa8fc996723623",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 339951,
"upload_time": "2024-10-29T17:06:15",
"upload_time_iso_8601": "2024-10-29T17:06:15.443358Z",
"url": "https://files.pythonhosted.org/packages/de/b3/de33be593f7516e1c370bc197e487619e5fc12268d8c05248c1d3ba20f3d/mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "791c3bf53bc4c2ea1046ef8d55b7670c779edf9ef0164704d406a8adc46d6936",
"md5": "ecbb840d9bed66f3926711eea0c2a542",
"sha256": "2630e962cd43a952f4b6a69a447f9a24c4bd70c43f3f5acf1d48b8c16b000000"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ecbb840d9bed66f3926711eea0c2a542",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 3890174,
"upload_time": "2024-10-29T17:07:00",
"upload_time_iso_8601": "2024-10-29T17:07:00.808094Z",
"url": "https://files.pythonhosted.org/packages/79/1c/3bf53bc4c2ea1046ef8d55b7670c779edf9ef0164704d406a8adc46d6936/mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "51514251def9ab2f755e9bcf695a4b654b8d7b111233dce9aa7c8e0bea7a4ad6",
"md5": "abf9a5058cee58b85fcc91e86cf8b4ef",
"sha256": "2b3ac91d654e7a52ce6dc956e82c35b3b1a4a85dd853f36b75dba0a2df376412"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "abf9a5058cee58b85fcc91e86cf8b4ef",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 341851,
"upload_time": "2024-10-29T17:06:01",
"upload_time_iso_8601": "2024-10-29T17:06:01.000720Z",
"url": "https://files.pythonhosted.org/packages/51/51/4251def9ab2f755e9bcf695a4b654b8d7b111233dce9aa7c8e0bea7a4ad6/mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6e4e0b113175e3198d4b22ec99b5fbb599b31a957ce09302adb7bb6d9804f759",
"md5": "7d9e4a3e1842a1dfe672ee64812e1376",
"sha256": "5d011174bd11dbfa208d92450f3326af69fe8180b4260947ebea6b012e75eb9a"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7d9e4a3e1842a1dfe672ee64812e1376",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 3886414,
"upload_time": "2024-10-29T17:06:45",
"upload_time_iso_8601": "2024-10-29T17:06:45.173287Z",
"url": "https://files.pythonhosted.org/packages/6e/4e/0b113175e3198d4b22ec99b5fbb599b31a957ce09302adb7bb6d9804f759/mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d0c45eeadf23b22b3a8d3f9312141ac00ebd6ba4ac4b41afa897771b55fc1d61",
"md5": "b1c3ce31be4a10b4493651bc800ff383",
"sha256": "9bc8103765aeae921d78fa76720eb255b446aa6ecd477f76c4d3306dee99fa1b"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "b1c3ce31be4a10b4493651bc800ff383",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 323012,
"upload_time": "2024-10-29T17:05:47",
"upload_time_iso_8601": "2024-10-29T17:05:47.145589Z",
"url": "https://files.pythonhosted.org/packages/d0/c4/5eeadf23b22b3a8d3f9312141ac00ebd6ba4ac4b41afa897771b55fc1d61/mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f3ac0824bd0c5ae8f003ad82f666025bc292485dbbbb399588f8ab675766f605",
"md5": "65e8f894f60394cefe1aa9e7a47ab615",
"sha256": "ae18c6ffa9372c4780c622bf51e5eaaaaca7a29aa6069a9657fd4e98b6dc4eb6"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "65e8f894f60394cefe1aa9e7a47ab615",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 3889564,
"upload_time": "2024-10-29T17:06:29",
"upload_time_iso_8601": "2024-10-29T17:06:29.238684Z",
"url": "https://files.pythonhosted.org/packages/f3/ac/0824bd0c5ae8f003ad82f666025bc292485dbbbb399588f8ab675766f605/mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fe2cb30577814ac0e28304c687f4ddda5f1807e76c2cc9467a9fa4fba93e4608",
"md5": "a8c67620052995c3616b0132d05790a4",
"sha256": "d148e83f51c77b48030b29ce80f478e85af2d6672d975923d797b6b51e248e9e"
},
"downloads": -1,
"filename": "mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "a8c67620052995c3616b0132d05790a4",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 340448,
"upload_time": "2024-10-29T17:05:31",
"upload_time_iso_8601": "2024-10-29T17:05:31.265401Z",
"url": "https://files.pythonhosted.org/packages/fe/2c/b30577814ac0e28304c687f4ddda5f1807e76c2cc9467a9fa4fba93e4608/mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-29 17:07:16",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "IntelPython",
"github_project": "mkl_random",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mkl-random"
}