[![Conda package](https://github.com/IntelPython/mkl_umath/actions/workflows/conda-package.yml/badge.svg)](https://github.com/IntelPython/mkl_umath/actions/workflows/conda-package.yml)
[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/IntelPython/mkl_umath/badge)](https://securityscorecards.dev/viewer/?uri=github.com/IntelPython/mkl_umath)
# `mkl_umath`
`mkl_umath._ufuncs` exposes [Intel(R) Math Kernel Library](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html)
powered version of loops used in the patched version of [NumPy](https://numpy.org), that used to be included in
[Intel(R) Distribution for Python*](https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html).
Patches were factored out per community feedback ([NEP-36](https://numpy.org/neps/nep-0036-fair-play.html)).
`mkl_umath` started as a part of Intel (R) Distribution for Python* optimizations to NumPy, and is now being released
as a stand-alone package. It can be installed into conda environment using
```
conda install -c https://software.repos.intel.com/python/conda mkl_umath
```
---
To install mkl_umath Pypi package please use following command:
```
python -m pip install mkl_umath
```
---
## Building
Intel(R) C compiler and Intel(R) Math Kernel Library are required to build `mkl_umath` from source:
```sh
# ensure that MKL is installed into Python prefix, Intel LLVM compiler is activated
export MKLROOT=$CONDA_PREFIX
CC=icx pip install --no-build-isolation --no-deps -e .
```
Raw data
{
"_id": null,
"home_page": "http://github.com/IntelPython/mkl_umath",
"name": "mkl-umath",
"maintainer": "Intel Corp.",
"docs_url": null,
"requires_python": null,
"maintainer_email": "scripting@intel.com",
"keywords": "mkl_umath",
"author": "Intel Corporation",
"author_email": null,
"download_url": "http://github.com/IntelPython/mkl_umath",
"platform": "Linux",
"description": "[![Conda package](https://github.com/IntelPython/mkl_umath/actions/workflows/conda-package.yml/badge.svg)](https://github.com/IntelPython/mkl_umath/actions/workflows/conda-package.yml)\r\n[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/IntelPython/mkl_umath/badge)](https://securityscorecards.dev/viewer/?uri=github.com/IntelPython/mkl_umath)\r\n\r\n# `mkl_umath`\r\n\r\n`mkl_umath._ufuncs` exposes [Intel(R) Math Kernel Library](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html)\r\npowered version of loops used in the patched version of [NumPy](https://numpy.org), that used to be included in\r\n[Intel(R) Distribution for Python*](https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html).\r\n\r\nPatches were factored out per community feedback ([NEP-36](https://numpy.org/neps/nep-0036-fair-play.html)).\r\n\r\n`mkl_umath` started as a part of Intel (R) Distribution for Python* optimizations to NumPy, and is now being released \r\nas a stand-alone package. It can be installed into conda environment using \r\n\r\n```\r\n conda install -c https://software.repos.intel.com/python/conda mkl_umath\r\n```\r\n\r\n---\r\n\r\nTo install mkl_umath Pypi package please use following command:\r\n\r\n```\r\n python -m pip install mkl_umath\r\n```\r\n\r\n---\r\n\r\n## Building\r\n\r\nIntel(R) C compiler and Intel(R) Math Kernel Library are required to build `mkl_umath` from source:\r\n\r\n```sh\r\n# ensure that MKL is installed into Python prefix, Intel LLVM compiler is activated\r\nexport MKLROOT=$CONDA_PREFIX\r\nCC=icx pip install --no-build-isolation --no-deps -e .\r\n```\r\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "MKL-based universal functions for NumPy arrays",
"version": "0.1.2",
"project_urls": {
"Download": "http://github.com/IntelPython/mkl_umath",
"Homepage": "http://github.com/IntelPython/mkl_umath"
},
"split_keywords": [
"mkl_umath"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "747ebe8eda14f87a0013da997bf9b33bf2a98d52913a99afec15ae4a78e88817",
"md5": "e967b4bbe82bc81e4b6483d60899a9f4",
"sha256": "064bae2dd5e91f32acffc620e06be52cecbcb29e4b813c9ec1bc22af7a095d82"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e967b4bbe82bc81e4b6483d60899a9f4",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 440961,
"upload_time": "2024-10-29T17:10:22",
"upload_time_iso_8601": "2024-10-29T17:10:22.323108Z",
"url": "https://files.pythonhosted.org/packages/74/7e/be8eda14f87a0013da997bf9b33bf2a98d52913a99afec15ae4a78e88817/mkl_umath-0.1.2-111-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f502380ee79bda14203dc3478da3a3a066c098f67892cac707d2a5e1bdfe1ad2",
"md5": "4ea556f02a16a929a95557f6adacb599",
"sha256": "ebfc0ad616de655ef986fa9c86ea515d58fa0416379bb392230787e88f2a0100"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "4ea556f02a16a929a95557f6adacb599",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 194280,
"upload_time": "2024-10-29T17:09:08",
"upload_time_iso_8601": "2024-10-29T17:09:08.518056Z",
"url": "https://files.pythonhosted.org/packages/f5/02/380ee79bda14203dc3478da3a3a066c098f67892cac707d2a5e1bdfe1ad2/mkl_umath-0.1.2-111-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1a8da17732237e6e06e7ab87c1ba4aa4a6cd37e3fd6b8f1002aa64917c1ff245",
"md5": "dad71e18f7a2c3907035e3da3cf906e4",
"sha256": "c63d37a815732e214ae8f50b71257450c1b51ef95dbcf22395e260b8a76a7e4f"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "dad71e18f7a2c3907035e3da3cf906e4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 440542,
"upload_time": "2024-10-29T17:10:09",
"upload_time_iso_8601": "2024-10-29T17:10:09.079401Z",
"url": "https://files.pythonhosted.org/packages/1a/8d/a17732237e6e06e7ab87c1ba4aa4a6cd37e3fd6b8f1002aa64917c1ff245/mkl_umath-0.1.2-111-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e23210d2d2d9b02553e05039872c4eebf278261376d8df0441928e559e889f2d",
"md5": "db239bc9feb27973c18251e34bc78ccc",
"sha256": "ed996ad15f7a8edeb277050d4d4f7e96ac05de5b1d8bfd963163f9df356f62bc"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "db239bc9feb27973c18251e34bc78ccc",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 194413,
"upload_time": "2024-10-29T17:08:55",
"upload_time_iso_8601": "2024-10-29T17:08:55.457584Z",
"url": "https://files.pythonhosted.org/packages/e2/32/10d2d2d9b02553e05039872c4eebf278261376d8df0441928e559e889f2d/mkl_umath-0.1.2-111-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "90be693cfd10349a53c0acf57ce1f4057d869989d3a8afd0e00310d76bb12d07",
"md5": "dc1cfc3fd4285101404d3029cf234522",
"sha256": "01e395067316f20cc593fdbdd3410ef4921377be6f938ec4049571fc2ed1f6bb"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "dc1cfc3fd4285101404d3029cf234522",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 439473,
"upload_time": "2024-10-29T17:09:33",
"upload_time_iso_8601": "2024-10-29T17:09:33.860220Z",
"url": "https://files.pythonhosted.org/packages/90/be/693cfd10349a53c0acf57ce1f4057d869989d3a8afd0e00310d76bb12d07/mkl_umath-0.1.2-111-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6257445beb01572f28d86a5f6008ebe67d6f649025a997ba329a83a7d0480f86",
"md5": "4f6803db85bd5113dbf8006b82a3afbf",
"sha256": "9c4fde23c50f14d2d515924a3bf88cc900f3a7d6e91e8948a2058a5a392597d2"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "4f6803db85bd5113dbf8006b82a3afbf",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 193439,
"upload_time": "2024-10-29T17:08:41",
"upload_time_iso_8601": "2024-10-29T17:08:41.624828Z",
"url": "https://files.pythonhosted.org/packages/62/57/445beb01572f28d86a5f6008ebe67d6f649025a997ba329a83a7d0480f86/mkl_umath-0.1.2-111-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "22c291f20f1fe4d48afc172c41085574445595ba583ed9427d289e37c377c30d",
"md5": "38a9284650e92ebaa3840be3ccfc6258",
"sha256": "8aeccad169a209c4e7ed81bdf5082d875e7c4fb2174dabdb1f2574e925bddca9"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "38a9284650e92ebaa3840be3ccfc6258",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 442643,
"upload_time": "2024-10-29T17:09:20",
"upload_time_iso_8601": "2024-10-29T17:09:20.864565Z",
"url": "https://files.pythonhosted.org/packages/22/c2/91f20f1fe4d48afc172c41085574445595ba583ed9427d289e37c377c30d/mkl_umath-0.1.2-111-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "843d31d1b456373270507c346c2f9fdc3d93ca8007129bfab4a1f9d5f566f24e",
"md5": "94160fe915800f86b510e74b88f16853",
"sha256": "c57a305abbd04164e022096d188a63c92135ca0c0845419ffc97e82e6d164935"
},
"downloads": -1,
"filename": "mkl_umath-0.1.2-111-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "94160fe915800f86b510e74b88f16853",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 195626,
"upload_time": "2024-10-29T17:08:27",
"upload_time_iso_8601": "2024-10-29T17:08:27.268140Z",
"url": "https://files.pythonhosted.org/packages/84/3d/31d1b456373270507c346c2f9fdc3d93ca8007129bfab4a1f9d5f566f24e/mkl_umath-0.1.2-111-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-29 17:10:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "IntelPython",
"github_project": "mkl_umath",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mkl-umath"
}