mktstructure


Namemktstructure JSON
Version 0.2.9 PyPI version JSON
download
home_pagehttps://github.com/mgao6767/mktstructure
SummaryDownload data from Refinitiv Tick History and compute some market microstructure measures.
upload_time2023-05-10 03:39:29
maintainer
docs_urlNone
authorMingze Gao
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mktstructure

A simple command-line tool to download data from Refinitiv Tick History and compute some market microstructure measures.

## Installation

You can install `mktstructure` via `pip`:

``` bash
pip install mktstructure
```

## Quick Start

Use `-h` or `--help` to see the usage instruction:

``` bash
$ mktstructure -h
usage: mktstructure [OPTION]...

Download data from Refinitiv Tick History and compute some market microstructure measures.

optional arguments:
  -h, --help            show this help message and exit
  -v, --version         show program's version number and exit

Sub-commands:
  Choose one from the following. Use `mktstructure subcommand -h` to see help for each sub-command.

  {download,clean,classify,compute}
    download            Download data from Refinitiv Tick History
    clean               Clean downloaded data
    classify            Classify ticks into buy and sell orders
    compute             Compute market microstructure measures
```

### 1. Download data

Let's download the tick history for all S&P500 component stocks from Jan 1, 2022, to Jan 31, 2022:

``` bash
mktstructure download -u {username} -p {password} --sp500 --parse --data_dir "./data" -b 2022-01-01 -e 2022-01-31
```

where `{username}` and `{password}` are the login credentials of Refinitiv DataScope Select.

Note that we set the `--parse` flag to parse the downloaded data (gzip) into csv files by stock and date into the `./data` folder.

### 2. Clean data

Then we clean the downloaded and parsed data in the `./data` folder: sorting by time, removing duplicates, etc.

``` bash
mktstructure clean --all --data_dir "./data" --replace
```

The ``--replace`` flag, if set, asks the program to replace the data file with the cleaned one to save disk space.

### 3. Classify trade directions

Use the `classify` subcommand to classify trades into buys and sells by the Lee and Ready (1991) algorithm.

``` bash
mktstructure classify --all --data_dir "./data"
```

### 4. Compute

Lastly, use the `compute` subcommand to compute specified market microstructure measures:

``` bash
mktstructure compute --all --data_dir "./data" --out bidaskspread.csv --bid_ask_spread
```

## Note

This tool is still a work in progress. Some breaking changes may be expected but will be kept minimal.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mgao6767/mktstructure",
    "name": "mktstructure",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Mingze Gao",
    "author_email": "mingze.gao@sydney.edu.au",
    "download_url": "https://files.pythonhosted.org/packages/56/58/522447f2952220d4cac3f515597bfad9f5a930721696972faae94957f3ab/mktstructure-0.2.9.tar.gz",
    "platform": null,
    "description": "# mktstructure\n\nA simple command-line tool to download data from Refinitiv Tick History and compute some market microstructure measures.\n\n## Installation\n\nYou can install `mktstructure` via `pip`:\n\n``` bash\npip install mktstructure\n```\n\n## Quick Start\n\nUse `-h` or `--help` to see the usage instruction:\n\n``` bash\n$ mktstructure -h\nusage: mktstructure [OPTION]...\n\nDownload data from Refinitiv Tick History and compute some market microstructure measures.\n\noptional arguments:\n  -h, --help            show this help message and exit\n  -v, --version         show program's version number and exit\n\nSub-commands:\n  Choose one from the following. Use `mktstructure subcommand -h` to see help for each sub-command.\n\n  {download,clean,classify,compute}\n    download            Download data from Refinitiv Tick History\n    clean               Clean downloaded data\n    classify            Classify ticks into buy and sell orders\n    compute             Compute market microstructure measures\n```\n\n### 1. Download data\n\nLet's download the tick history for all S&P500 component stocks from Jan 1, 2022, to Jan 31, 2022:\n\n``` bash\nmktstructure download -u {username} -p {password} --sp500 --parse --data_dir \"./data\" -b 2022-01-01 -e 2022-01-31\n```\n\nwhere `{username}` and `{password}` are the login credentials of Refinitiv DataScope Select.\n\nNote that we set the `--parse` flag to parse the downloaded data (gzip) into csv files by stock and date into the `./data` folder.\n\n### 2. Clean data\n\nThen we clean the downloaded and parsed data in the `./data` folder: sorting by time, removing duplicates, etc.\n\n``` bash\nmktstructure clean --all --data_dir \"./data\" --replace\n```\n\nThe ``--replace`` flag, if set, asks the program to replace the data file with the cleaned one to save disk space.\n\n### 3. Classify trade directions\n\nUse the `classify` subcommand to classify trades into buys and sells by the Lee and Ready (1991) algorithm.\n\n``` bash\nmktstructure classify --all --data_dir \"./data\"\n```\n\n### 4. Compute\n\nLastly, use the `compute` subcommand to compute specified market microstructure measures:\n\n``` bash\nmktstructure compute --all --data_dir \"./data\" --out bidaskspread.csv --bid_ask_spread\n```\n\n## Note\n\nThis tool is still a work in progress. Some breaking changes may be expected but will be kept minimal.",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Download data from Refinitiv Tick History and compute some market microstructure measures.",
    "version": "0.2.9",
    "project_urls": {
        "Homepage": "https://github.com/mgao6767/mktstructure"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5658522447f2952220d4cac3f515597bfad9f5a930721696972faae94957f3ab",
                "md5": "e0236e0edefbcf589abe431266fbf071",
                "sha256": "beda19b5132b8c2de16861aad8214a631e8bbc6041eec30f74ac4aa447d3e079"
            },
            "downloads": -1,
            "filename": "mktstructure-0.2.9.tar.gz",
            "has_sig": false,
            "md5_digest": "e0236e0edefbcf589abe431266fbf071",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 19989,
            "upload_time": "2023-05-10T03:39:29",
            "upload_time_iso_8601": "2023-05-10T03:39:29.833985Z",
            "url": "https://files.pythonhosted.org/packages/56/58/522447f2952220d4cac3f515597bfad9f5a930721696972faae94957f3ab/mktstructure-0.2.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-10 03:39:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mgao6767",
    "github_project": "mktstructure",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mktstructure"
}
        
Elapsed time: 0.11114s