ml-assistant-cli


Nameml-assistant-cli JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryEnd-to-end ML workflow CLI - from dataset to deployed API
upload_time2025-08-13 13:34:25
maintainerNone
docs_urlNone
authorML Assistant CLI Team
requires_python>=3.9
licenseNone
keywords bentoml cli deployment machine-learning mlops
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ML Assistant CLI 🚀

**From dataset to deployed API in minutes**

ML Assistant CLI is a developer-first command-line tool that unifies the entire ML lifecycle - from data preprocessing to cloud deployment - with AI-guided suggestions and one-click deployments.

## ✨ Features

- **End-to-end ML workflow** in a single CLI
- **AI-guided suggestions** for data quality and model improvements
- **BentoML integration** for reproducible model packaging
- **Multi-cloud deployment** (BentoCloud, Azure ML, AWS SageMaker HyperPod)
- **Production-ready** with monitoring, rollbacks, and traffic management
- **Beginner-friendly** with sensible defaults and clear guidance

## 🚀 Quick Start

### Installation Options

#### Option 1: PyPI (Recommended)

```bash
# Install from PyPI
pip install ml-assistant-cli

# Or install with cloud support
pip install ml-assistant-cli[cloud]

# Verify installation
mlcli --help
```

#### Option 2: Docker (No Installation Required)

```bash
# Run directly with Docker
docker run -it --rm -v $(pwd):/home/mlcli/workspace santhoshkumar0918/ml-assistant-cli:latest

# Or create convenient alias
alias mlcli="docker run -it --rm -v $(pwd):/home/mlcli/workspace santhoshkumar0918/ml-assistant-cli:latest"

# Then use normally
mlcli --help
```

#### Option 3: pipx (Isolated Installation)

```bash
# Install with pipx for isolated environment
pipx install ml-assistant-cli
mlcli --help
```

#### Option 4: From Source

```bash
# Clone and install
git clone https://github.com/mlcli/mlcli.git
cd mlcli
pip install -e .
```

### Initialize a new ML project

```bash
mlcli init --name my-ml-project
cd my-ml-project
```

### Process your data

```bash
# Add your dataset to data/raw/
mlcli preprocess --input data/raw/your_data.csv --target target_column
```

### Train models

```bash
mlcli train
```

### Evaluate and get suggestions

```bash
mlcli evaluate
mlcli suggest
```

### Make predictions

```bash
mlcli predict --input new_data.csv --output predictions.csv
```

### Deploy to cloud (coming soon)

```bash
mlcli package
mlcli deploy --provider bentocloud
mlcli monitor
```

## 📁 Project Structure

```
my-ml-project/
├── data/
│   ├── raw/          # Original datasets
│   ├── processed/    # Cleaned data
│   └── external/     # External datasets
├── models/           # Trained models
├── reports/          # Analysis reports
├── deployments/      # Deployment configs
├── mlcli.yaml       # Configuration
└── README.md
```

## ⚙️ Configuration

Customize your ML pipeline in `mlcli.yaml`:

```yaml
project_name: my-ml-project
description: My awesome ML project

data:
  target_column: target
  test_size: 0.2
  missing_value_strategy: auto
  scaling_strategy: standard

model:
  algorithms: [logistic_regression, random_forest, xgboost]
  hyperparameter_tuning: true
  cv_folds: 5

deployment:
  provider: bentocloud
  scaling_min: 1
  scaling_max: 3
  instance_type: cpu.2
```

## 🎯 Roadmap

### Phase 1: Local MVP ✅

- [x] Project initialization
- [x] Data preprocessing and analysis
- [ ] Model training with hyperparameter optimization
- [ ] Model evaluation and metrics
- [ ] AI-guided suggestions
- [ ] Batch predictions
- [ ] BentoML packaging

### Phase 2: Cloud MVP

- [ ] BentoCloud deployment
- [ ] Model monitoring
- [ ] Deployment rollbacks

### Phase 3: Multi-Cloud

- [ ] Azure ML integration
- [ ] AWS SageMaker HyperPod support
- [ ] Advanced deployment strategies
- [ ] CI/CD integration

## 🤝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## 📄 License

MIT License - see [LICENSE](LICENSE) for details.

## 🆘 Support

- 📖 [Documentation](https://mlcli.readthedocs.io)
- 🐛 [Issue Tracker](https://github.com/mlcli/mlcli/issues)
- 💬 [Discussions](https://github.com/mlcli/mlcli/discussions)

---

**Built with ❤️ for the ML community**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ml-assistant-cli",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "bentoml, cli, deployment, machine-learning, mlops",
    "author": "ML Assistant CLI Team",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/49/ef/f1f2adc73b24ec1343a8381dbb402943bd3df51bf0e7804191084452f4ef/ml_assistant_cli-0.2.0.tar.gz",
    "platform": null,
    "description": "# ML Assistant CLI \ud83d\ude80\n\n**From dataset to deployed API in minutes**\n\nML Assistant CLI is a developer-first command-line tool that unifies the entire ML lifecycle - from data preprocessing to cloud deployment - with AI-guided suggestions and one-click deployments.\n\n## \u2728 Features\n\n- **End-to-end ML workflow** in a single CLI\n- **AI-guided suggestions** for data quality and model improvements\n- **BentoML integration** for reproducible model packaging\n- **Multi-cloud deployment** (BentoCloud, Azure ML, AWS SageMaker HyperPod)\n- **Production-ready** with monitoring, rollbacks, and traffic management\n- **Beginner-friendly** with sensible defaults and clear guidance\n\n## \ud83d\ude80 Quick Start\n\n### Installation Options\n\n#### Option 1: PyPI (Recommended)\n\n```bash\n# Install from PyPI\npip install ml-assistant-cli\n\n# Or install with cloud support\npip install ml-assistant-cli[cloud]\n\n# Verify installation\nmlcli --help\n```\n\n#### Option 2: Docker (No Installation Required)\n\n```bash\n# Run directly with Docker\ndocker run -it --rm -v $(pwd):/home/mlcli/workspace santhoshkumar0918/ml-assistant-cli:latest\n\n# Or create convenient alias\nalias mlcli=\"docker run -it --rm -v $(pwd):/home/mlcli/workspace santhoshkumar0918/ml-assistant-cli:latest\"\n\n# Then use normally\nmlcli --help\n```\n\n#### Option 3: pipx (Isolated Installation)\n\n```bash\n# Install with pipx for isolated environment\npipx install ml-assistant-cli\nmlcli --help\n```\n\n#### Option 4: From Source\n\n```bash\n# Clone and install\ngit clone https://github.com/mlcli/mlcli.git\ncd mlcli\npip install -e .\n```\n\n### Initialize a new ML project\n\n```bash\nmlcli init --name my-ml-project\ncd my-ml-project\n```\n\n### Process your data\n\n```bash\n# Add your dataset to data/raw/\nmlcli preprocess --input data/raw/your_data.csv --target target_column\n```\n\n### Train models\n\n```bash\nmlcli train\n```\n\n### Evaluate and get suggestions\n\n```bash\nmlcli evaluate\nmlcli suggest\n```\n\n### Make predictions\n\n```bash\nmlcli predict --input new_data.csv --output predictions.csv\n```\n\n### Deploy to cloud (coming soon)\n\n```bash\nmlcli package\nmlcli deploy --provider bentocloud\nmlcli monitor\n```\n\n## \ud83d\udcc1 Project Structure\n\n```\nmy-ml-project/\n\u251c\u2500\u2500 data/\n\u2502   \u251c\u2500\u2500 raw/          # Original datasets\n\u2502   \u251c\u2500\u2500 processed/    # Cleaned data\n\u2502   \u2514\u2500\u2500 external/     # External datasets\n\u251c\u2500\u2500 models/           # Trained models\n\u251c\u2500\u2500 reports/          # Analysis reports\n\u251c\u2500\u2500 deployments/      # Deployment configs\n\u251c\u2500\u2500 mlcli.yaml       # Configuration\n\u2514\u2500\u2500 README.md\n```\n\n## \u2699\ufe0f Configuration\n\nCustomize your ML pipeline in `mlcli.yaml`:\n\n```yaml\nproject_name: my-ml-project\ndescription: My awesome ML project\n\ndata:\n  target_column: target\n  test_size: 0.2\n  missing_value_strategy: auto\n  scaling_strategy: standard\n\nmodel:\n  algorithms: [logistic_regression, random_forest, xgboost]\n  hyperparameter_tuning: true\n  cv_folds: 5\n\ndeployment:\n  provider: bentocloud\n  scaling_min: 1\n  scaling_max: 3\n  instance_type: cpu.2\n```\n\n## \ud83c\udfaf Roadmap\n\n### Phase 1: Local MVP \u2705\n\n- [x] Project initialization\n- [x] Data preprocessing and analysis\n- [ ] Model training with hyperparameter optimization\n- [ ] Model evaluation and metrics\n- [ ] AI-guided suggestions\n- [ ] Batch predictions\n- [ ] BentoML packaging\n\n### Phase 2: Cloud MVP\n\n- [ ] BentoCloud deployment\n- [ ] Model monitoring\n- [ ] Deployment rollbacks\n\n### Phase 3: Multi-Cloud\n\n- [ ] Azure ML integration\n- [ ] AWS SageMaker HyperPod support\n- [ ] Advanced deployment strategies\n- [ ] CI/CD integration\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n## \ud83d\udcc4 License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## \ud83c\udd98 Support\n\n- \ud83d\udcd6 [Documentation](https://mlcli.readthedocs.io)\n- \ud83d\udc1b [Issue Tracker](https://github.com/mlcli/mlcli/issues)\n- \ud83d\udcac [Discussions](https://github.com/mlcli/mlcli/discussions)\n\n---\n\n**Built with \u2764\ufe0f for the ML community**\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "End-to-end ML workflow CLI - from dataset to deployed API",
    "version": "0.2.0",
    "project_urls": {
        "Documentation": "https://mlcli.readthedocs.io",
        "Homepage": "https://github.com/mlcli/mlcli",
        "Issues": "https://github.com/mlcli/mlcli/issues",
        "Repository": "https://github.com/mlcli/mlcli"
    },
    "split_keywords": [
        "bentoml",
        " cli",
        " deployment",
        " machine-learning",
        " mlops"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f586fbf28e234d6f7fc84af2e6a9105d7259b7008f3ccff84489e48d2087bc1c",
                "md5": "9099788a31f4a20d16332b6f7b3b02c0",
                "sha256": "540dac6f64a0052db736d0e8a28d750bfdb85d8ae68604e988734e1d70e4a8bf"
            },
            "downloads": -1,
            "filename": "ml_assistant_cli-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9099788a31f4a20d16332b6f7b3b02c0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 36842,
            "upload_time": "2025-08-13T13:34:23",
            "upload_time_iso_8601": "2025-08-13T13:34:23.365966Z",
            "url": "https://files.pythonhosted.org/packages/f5/86/fbf28e234d6f7fc84af2e6a9105d7259b7008f3ccff84489e48d2087bc1c/ml_assistant_cli-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "49eff1f2adc73b24ec1343a8381dbb402943bd3df51bf0e7804191084452f4ef",
                "md5": "3b5a57e516ae7e797f9524df5843918d",
                "sha256": "838f9141f41c8348fe2c0b3df12ce312f9d89528130b8399904f23e8bbedd329"
            },
            "downloads": -1,
            "filename": "ml_assistant_cli-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3b5a57e516ae7e797f9524df5843918d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 39778,
            "upload_time": "2025-08-13T13:34:25",
            "upload_time_iso_8601": "2025-08-13T13:34:25.065902Z",
            "url": "https://files.pythonhosted.org/packages/49/ef/f1f2adc73b24ec1343a8381dbb402943bd3df51bf0e7804191084452f4ef/ml_assistant_cli-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-13 13:34:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mlcli",
    "github_project": "mlcli",
    "github_not_found": true,
    "lcname": "ml-assistant-cli"
}
        
Elapsed time: 1.08912s