Name | ml-dtypes JSON |
Version |
0.5.3
JSON |
| download |
home_page | None |
Summary | ml_dtypes is a stand-alone implementation of several NumPy dtype extensions used in machine learning. |
upload_time | 2025-07-29 18:39:19 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# ml_dtypes
[](https://github.com/jax-ml/ml_dtypes/actions/workflows/test.yml)
[](https://github.com/jax-ml/ml_dtypes/actions/workflows/wheels.yml)
[](https://badge.fury.io/py/ml_dtypes)
`ml_dtypes` is a stand-alone implementation of several NumPy dtype extensions used in machine learning libraries, including:
- [`bfloat16`](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format):
an alternative to the standard [`float16`](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) format
- 8-bit floating point representations, parameterized by number of exponent and
mantissa bits, as well as the bias (if any) and representability of infinity,
NaN, and signed zero.
* `float8_e3m4`
* `float8_e4m3`
* `float8_e4m3b11fnuz`
* `float8_e4m3fn`
* `float8_e4m3fnuz`
* `float8_e5m2`
* `float8_e5m2fnuz`
* `float8_e8m0fnu`
- Microscaling (MX) sub-byte floating point representations:
* `float4_e2m1fn`
* `float6_e2m3fn`
* `float6_e3m2fn`
- Narrow integer encodings:
* `int2`
* `int4`
* `uint2`
* `uint4`
See below for specifications of these number formats.
## Installation
The `ml_dtypes` package is tested with Python versions 3.9-3.12, and can be installed
with the following command:
```
pip install ml_dtypes
```
To test your installation, you can run the following:
```
pip install absl-py pytest
pytest --pyargs ml_dtypes
```
To build from source, clone the repository and run:
```
git submodule init
git submodule update
pip install .
```
## Example Usage
```python
>>> from ml_dtypes import bfloat16
>>> import numpy as np
>>> np.zeros(4, dtype=bfloat16)
array([0, 0, 0, 0], dtype=bfloat16)
```
Importing `ml_dtypes` also registers the data types with numpy, so that they may
be referred to by their string name:
```python
>>> np.dtype('bfloat16')
dtype(bfloat16)
>>> np.dtype('float8_e5m2')
dtype(float8_e5m2)
```
## Specifications of implemented floating point formats
### `bfloat16`
A `bfloat16` number is a single-precision float truncated at 16 bits.
Exponent: 8, Mantissa: 7, exponent bias: 127. IEEE 754, with NaN and inf.
### `float4_e2m1fn`
Exponent: 2, Mantissa: 1, bias: 1.
Extended range: no inf, no NaN.
Microscaling format, 4 bits (encoding: `0bSEEM`) using byte storage (higher 4
bits are unused). NaN representation is undefined.
Possible absolute values: [`0`, `0.5`, `1`, `1.5`, `2`, `3`, `4`, `6`]
### `float6_e2m3fn`
Exponent: 2, Mantissa: 3, bias: 1.
Extended range: no inf, no NaN.
Microscaling format, 6 bits (encoding: `0bSEEMMM`) using byte storage (higher 2
bits are unused). NaN representation is undefined.
Possible values range: [`-7.5`; `7.5`]
### `float6_e3m2fn`
Exponent: 3, Mantissa: 2, bias: 3.
Extended range: no inf, no NaN.
Microscaling format, 4 bits (encoding: `0bSEEEMM`) using byte storage (higher 2
bits are unused). NaN representation is undefined.
Possible values range: [`-28`; `28`]
### `float8_e3m4`
Exponent: 3, Mantissa: 4, bias: 3. IEEE 754, with NaN and inf.
### `float8_e4m3`
Exponent: 4, Mantissa: 3, bias: 7. IEEE 754, with NaN and inf.
### `float8_e4m3b11fnuz`
Exponent: 4, Mantissa: 3, bias: 11.
Extended range: no inf, NaN represented by 0b1000'0000.
### `float8_e4m3fn`
Exponent: 4, Mantissa: 3, bias: 7.
Extended range: no inf, NaN represented by 0bS111'1111.
The `fn` suffix is for consistency with the corresponding LLVM/MLIR type, signaling this type is not consistent with IEEE-754. The `f` indicates it is finite values only. The `n` indicates it includes NaNs, but only at the outer range.
### `float8_e4m3fnuz`
8-bit floating point with 3 bit mantissa.
An 8-bit floating point type with 1 sign bit, 4 bits exponent and 3 bits mantissa. The suffix `fnuz` is consistent with LLVM/MLIR naming and is derived from the differences to IEEE floating point conventions. `F` is for "finite" (no infinities), `N` for with special NaN encoding, `UZ` for unsigned zero.
This type has the following characteristics:
* bit encoding: S1E4M3 - `0bSEEEEMMM`
* exponent bias: 8
* infinities: Not supported
* NaNs: Supported with sign bit set to 1, exponent bits and mantissa bits set to all 0s - `0b10000000`
* denormals when exponent is 0
### `float8_e5m2`
Exponent: 5, Mantissa: 2, bias: 15. IEEE 754, with NaN and inf.
### `float8_e5m2fnuz`
8-bit floating point with 2 bit mantissa.
An 8-bit floating point type with 1 sign bit, 5 bits exponent and 2 bits mantissa. The suffix `fnuz` is consistent with LLVM/MLIR naming and is derived from the differences to IEEE floating point conventions. `F` is for "finite" (no infinities), `N` for with special NaN encoding, `UZ` for unsigned zero.
This type has the following characteristics:
* bit encoding: S1E5M2 - `0bSEEEEEMM`
* exponent bias: 16
* infinities: Not supported
* NaNs: Supported with sign bit set to 1, exponent bits and mantissa bits set to all 0s - `0b10000000`
* denormals when exponent is 0
### `float8_e8m0fnu`
[OpenCompute MX](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf)
scale format E8M0, which has the following properties:
* Unsigned format
* 8 exponent bits
* Exponent range from -127 to 127
* No zero and infinity
* Single NaN value (0xFF).
## `int2`, `int4`, `uint2` and `uint4`
2 and 4-bit integer types, where each element is represented unpacked (i.e.,
padded up to a byte in memory).
NumPy does not support types smaller than a single byte: for example, the
distance between adjacent elements in an array (`.strides`) is expressed as
an integer number of bytes. Relaxing this restriction would be a considerable
engineering project. These types therefore use an unpacked representation, where
each element of the array is padded up to a byte in memory. The lower two or four
bits of each byte contain the representation of the number, whereas the remaining
upper bits are ignored.
## Quirks of low-precision Arithmetic
If you're exploring the use of low-precision dtypes in your code, you should be
careful to anticipate when the precision loss might lead to surprising results.
One example is the behavior of aggregations like `sum`; consider this `bfloat16`
summation in NumPy (run with version 1.24.2):
```python
>>> from ml_dtypes import bfloat16
>>> import numpy as np
>>> rng = np.random.default_rng(seed=0)
>>> vals = rng.uniform(size=10000).astype(bfloat16)
>>> vals.sum()
256
```
The true sum should be close to 5000, but numpy returns exactly 256: this is
because `bfloat16` does not have the precision to increment `256` by values less than
`1`:
```python
>>> bfloat16(256) + bfloat16(1)
256
```
After 256, the next representable value in bfloat16 is 258:
```python
>>> np.nextafter(bfloat16(256), bfloat16(np.inf))
258
```
For better results you can specify that the accumulation should happen in a
higher-precision type like `float32`:
```python
>>> vals.sum(dtype='float32').astype(bfloat16)
4992
```
In contrast to NumPy, projects like [JAX](http://jax.readthedocs.io/) which support
low-precision arithmetic more natively will often do these kinds of higher-precision
accumulations automatically:
```python
>>> import jax.numpy as jnp
>>> jnp.array(vals).sum()
Array(4992, dtype=bfloat16)
```
## License
*This is not an officially supported Google product.*
The `ml_dtypes` source code is licensed under the Apache 2.0 license
(see [LICENSE](LICENSE)). Pre-compiled wheels are built with the
[EIGEN](https://eigen.tuxfamily.org/) project, which is released under the
MPL 2.0 license (see [LICENSE.eigen](LICENSE.eigen)).
Raw data
{
"_id": null,
"home_page": null,
"name": "ml-dtypes",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "ml_dtypes authors <ml_dtypes@google.com>",
"download_url": "https://files.pythonhosted.org/packages/78/a7/aad060393123cfb383956dca68402aff3db1e1caffd5764887ed5153f41b/ml_dtypes-0.5.3.tar.gz",
"platform": null,
"description": "# ml_dtypes\n\n[](https://github.com/jax-ml/ml_dtypes/actions/workflows/test.yml)\n[](https://github.com/jax-ml/ml_dtypes/actions/workflows/wheels.yml)\n[](https://badge.fury.io/py/ml_dtypes)\n\n`ml_dtypes` is a stand-alone implementation of several NumPy dtype extensions used in machine learning libraries, including:\n\n- [`bfloat16`](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format):\n an alternative to the standard [`float16`](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) format\n- 8-bit floating point representations, parameterized by number of exponent and\n mantissa bits, as well as the bias (if any) and representability of infinity,\n NaN, and signed zero.\n * `float8_e3m4`\n * `float8_e4m3`\n * `float8_e4m3b11fnuz`\n * `float8_e4m3fn`\n * `float8_e4m3fnuz`\n * `float8_e5m2`\n * `float8_e5m2fnuz`\n * `float8_e8m0fnu`\n- Microscaling (MX) sub-byte floating point representations:\n * `float4_e2m1fn`\n * `float6_e2m3fn`\n * `float6_e3m2fn`\n- Narrow integer encodings:\n * `int2`\n * `int4`\n * `uint2`\n * `uint4`\n\nSee below for specifications of these number formats.\n\n## Installation\n\nThe `ml_dtypes` package is tested with Python versions 3.9-3.12, and can be installed\nwith the following command:\n```\npip install ml_dtypes\n```\nTo test your installation, you can run the following:\n```\npip install absl-py pytest\npytest --pyargs ml_dtypes\n```\nTo build from source, clone the repository and run:\n```\ngit submodule init\ngit submodule update\npip install .\n```\n\n## Example Usage\n\n```python\n>>> from ml_dtypes import bfloat16\n>>> import numpy as np\n>>> np.zeros(4, dtype=bfloat16)\narray([0, 0, 0, 0], dtype=bfloat16)\n```\nImporting `ml_dtypes` also registers the data types with numpy, so that they may\nbe referred to by their string name:\n\n```python\n>>> np.dtype('bfloat16')\ndtype(bfloat16)\n>>> np.dtype('float8_e5m2')\ndtype(float8_e5m2)\n```\n\n## Specifications of implemented floating point formats\n\n### `bfloat16`\n\nA `bfloat16` number is a single-precision float truncated at 16 bits.\n\nExponent: 8, Mantissa: 7, exponent bias: 127. IEEE 754, with NaN and inf.\n\n### `float4_e2m1fn`\n\nExponent: 2, Mantissa: 1, bias: 1.\n\nExtended range: no inf, no NaN.\n\nMicroscaling format, 4 bits (encoding: `0bSEEM`) using byte storage (higher 4\nbits are unused). NaN representation is undefined.\n\nPossible absolute values: [`0`, `0.5`, `1`, `1.5`, `2`, `3`, `4`, `6`]\n\n### `float6_e2m3fn`\n\nExponent: 2, Mantissa: 3, bias: 1.\n\nExtended range: no inf, no NaN.\n\nMicroscaling format, 6 bits (encoding: `0bSEEMMM`) using byte storage (higher 2\nbits are unused). NaN representation is undefined.\n\nPossible values range: [`-7.5`; `7.5`]\n\n### `float6_e3m2fn`\n\nExponent: 3, Mantissa: 2, bias: 3.\n\nExtended range: no inf, no NaN.\n\nMicroscaling format, 4 bits (encoding: `0bSEEEMM`) using byte storage (higher 2\nbits are unused). NaN representation is undefined.\n\nPossible values range: [`-28`; `28`]\n\n### `float8_e3m4`\n\nExponent: 3, Mantissa: 4, bias: 3. IEEE 754, with NaN and inf.\n\n### `float8_e4m3`\n\nExponent: 4, Mantissa: 3, bias: 7. IEEE 754, with NaN and inf.\n\n### `float8_e4m3b11fnuz`\n\nExponent: 4, Mantissa: 3, bias: 11.\n\nExtended range: no inf, NaN represented by 0b1000'0000.\n\n### `float8_e4m3fn`\n\nExponent: 4, Mantissa: 3, bias: 7.\n\nExtended range: no inf, NaN represented by 0bS111'1111.\n\nThe `fn` suffix is for consistency with the corresponding LLVM/MLIR type, signaling this type is not consistent with IEEE-754. The `f` indicates it is finite values only. The `n` indicates it includes NaNs, but only at the outer range.\n\n### `float8_e4m3fnuz`\n\n8-bit floating point with 3 bit mantissa.\n\nAn 8-bit floating point type with 1 sign bit, 4 bits exponent and 3 bits mantissa. The suffix `fnuz` is consistent with LLVM/MLIR naming and is derived from the differences to IEEE floating point conventions. `F` is for \"finite\" (no infinities), `N` for with special NaN encoding, `UZ` for unsigned zero.\n\nThis type has the following characteristics:\n * bit encoding: S1E4M3 - `0bSEEEEMMM`\n * exponent bias: 8\n * infinities: Not supported\n * NaNs: Supported with sign bit set to 1, exponent bits and mantissa bits set to all 0s - `0b10000000`\n * denormals when exponent is 0\n\n### `float8_e5m2`\n\nExponent: 5, Mantissa: 2, bias: 15. IEEE 754, with NaN and inf.\n\n### `float8_e5m2fnuz`\n\n8-bit floating point with 2 bit mantissa.\n\nAn 8-bit floating point type with 1 sign bit, 5 bits exponent and 2 bits mantissa. The suffix `fnuz` is consistent with LLVM/MLIR naming and is derived from the differences to IEEE floating point conventions. `F` is for \"finite\" (no infinities), `N` for with special NaN encoding, `UZ` for unsigned zero.\n\nThis type has the following characteristics:\n * bit encoding: S1E5M2 - `0bSEEEEEMM`\n * exponent bias: 16\n * infinities: Not supported\n * NaNs: Supported with sign bit set to 1, exponent bits and mantissa bits set to all 0s - `0b10000000`\n * denormals when exponent is 0\n\n### `float8_e8m0fnu`\n\n[OpenCompute MX](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf)\nscale format E8M0, which has the following properties:\n * Unsigned format\n * 8 exponent bits\n * Exponent range from -127 to 127\n * No zero and infinity\n * Single NaN value (0xFF).\n\n## `int2`, `int4`, `uint2` and `uint4`\n\n2 and 4-bit integer types, where each element is represented unpacked (i.e.,\npadded up to a byte in memory).\n\nNumPy does not support types smaller than a single byte: for example, the\ndistance between adjacent elements in an array (`.strides`) is expressed as\nan integer number of bytes. Relaxing this restriction would be a considerable\nengineering project. These types therefore use an unpacked representation, where\neach element of the array is padded up to a byte in memory. The lower two or four\nbits of each byte contain the representation of the number, whereas the remaining\nupper bits are ignored.\n\n## Quirks of low-precision Arithmetic\n\nIf you're exploring the use of low-precision dtypes in your code, you should be\ncareful to anticipate when the precision loss might lead to surprising results.\nOne example is the behavior of aggregations like `sum`; consider this `bfloat16`\nsummation in NumPy (run with version 1.24.2):\n\n```python\n>>> from ml_dtypes import bfloat16\n>>> import numpy as np\n>>> rng = np.random.default_rng(seed=0)\n>>> vals = rng.uniform(size=10000).astype(bfloat16)\n>>> vals.sum()\n256\n```\nThe true sum should be close to 5000, but numpy returns exactly 256: this is\nbecause `bfloat16` does not have the precision to increment `256` by values less than\n`1`:\n\n```python\n>>> bfloat16(256) + bfloat16(1)\n256\n```\nAfter 256, the next representable value in bfloat16 is 258:\n\n```python\n>>> np.nextafter(bfloat16(256), bfloat16(np.inf))\n258\n```\nFor better results you can specify that the accumulation should happen in a\nhigher-precision type like `float32`:\n\n```python\n>>> vals.sum(dtype='float32').astype(bfloat16)\n4992\n```\nIn contrast to NumPy, projects like [JAX](http://jax.readthedocs.io/) which support\nlow-precision arithmetic more natively will often do these kinds of higher-precision\naccumulations automatically:\n\n```python\n>>> import jax.numpy as jnp\n>>> jnp.array(vals).sum()\nArray(4992, dtype=bfloat16)\n```\n\n## License\n\n*This is not an officially supported Google product.*\n\nThe `ml_dtypes` source code is licensed under the Apache 2.0 license\n(see [LICENSE](LICENSE)). Pre-compiled wheels are built with the\n[EIGEN](https://eigen.tuxfamily.org/) project, which is released under the\nMPL 2.0 license (see [LICENSE.eigen](LICENSE.eigen)).\n",
"bugtrack_url": null,
"license": null,
"summary": "ml_dtypes is a stand-alone implementation of several NumPy dtype extensions used in machine learning.",
"version": "0.5.3",
"project_urls": {
"homepage": "https://github.com/jax-ml/ml_dtypes",
"repository": "https://github.com/jax-ml/ml_dtypes"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "acbb1f32124ab6d3a279ea39202fe098aea95b2d81ef0ce1d48612b6bf715e82",
"md5": "f765c46da1bdbdfc314447a656a1a4e5",
"sha256": "0a1d68a7cb53e3f640b2b6a34d12c0542da3dd935e560fdf463c0c77f339fc20"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp310-cp310-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "f765c46da1bdbdfc314447a656a1a4e5",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 667409,
"upload_time": "2025-07-29T18:38:17",
"upload_time_iso_8601": "2025-07-29T18:38:17.321820Z",
"url": "https://files.pythonhosted.org/packages/ac/bb/1f32124ab6d3a279ea39202fe098aea95b2d81ef0ce1d48612b6bf715e82/ml_dtypes-0.5.3-cp310-cp310-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1dace002d12ae19136e25bb41c7d14d7e1a1b08f3c0e99a44455ff6339796507",
"md5": "b3e3a205eb132c5e27cf713434bfe98e",
"sha256": "0cd5a6c711b5350f3cbc2ac28def81cd1c580075ccb7955e61e9d8f4bfd40d24"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "b3e3a205eb132c5e27cf713434bfe98e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 4960702,
"upload_time": "2025-07-29T18:38:19",
"upload_time_iso_8601": "2025-07-29T18:38:19.616663Z",
"url": "https://files.pythonhosted.org/packages/1d/ac/e002d12ae19136e25bb41c7d14d7e1a1b08f3c0e99a44455ff6339796507/ml_dtypes-0.5.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "dd1279e9954e6b3255a4b1becb191a922d6e2e94d03d16a06341ae9261963ae8",
"md5": "0af9b847674ec6133496c9df3ef9273e",
"sha256": "bdcf26c2dbc926b8a35ec8cbfad7eff1a8bd8239e12478caca83a1fc2c400dc2"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0af9b847674ec6133496c9df3ef9273e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 4933471,
"upload_time": "2025-07-29T18:38:21",
"upload_time_iso_8601": "2025-07-29T18:38:21.809817Z",
"url": "https://files.pythonhosted.org/packages/dd/12/79e9954e6b3255a4b1becb191a922d6e2e94d03d16a06341ae9261963ae8/ml_dtypes-0.5.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d5aad1eff619e83cd1ddf6b561d8240063d978e5d887d1861ba09ef01778ec3a",
"md5": "4aff6051377acedc838be78c0ca80451",
"sha256": "aecbd7c5272c82e54d5b99d8435fd10915d1bc704b7df15e4d9ca8dc3902be61"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "4aff6051377acedc838be78c0ca80451",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 206330,
"upload_time": "2025-07-29T18:38:23",
"upload_time_iso_8601": "2025-07-29T18:38:23.663606Z",
"url": "https://files.pythonhosted.org/packages/d5/aa/d1eff619e83cd1ddf6b561d8240063d978e5d887d1861ba09ef01778ec3a/ml_dtypes-0.5.3-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "aff1720cb1409b5d0c05cff9040c0e9fba73fa4c67897d33babf905d5d46a070",
"md5": "dfd7fe774fce8964b3fa5304c8ea5a19",
"sha256": "4a177b882667c69422402df6ed5c3428ce07ac2c1f844d8a1314944651439458"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp311-cp311-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "dfd7fe774fce8964b3fa5304c8ea5a19",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 667412,
"upload_time": "2025-07-29T18:38:25",
"upload_time_iso_8601": "2025-07-29T18:38:25.275839Z",
"url": "https://files.pythonhosted.org/packages/af/f1/720cb1409b5d0c05cff9040c0e9fba73fa4c67897d33babf905d5d46a070/ml_dtypes-0.5.3-cp311-cp311-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6ad505861ede5d299f6599f86e6bc1291714e2116d96df003cfe23cc54bcc568",
"md5": "1ab34cbfe3e61c37ebdc69a737c35ed0",
"sha256": "9849ce7267444c0a717c80c6900997de4f36e2815ce34ac560a3edb2d9a64cd2"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "1ab34cbfe3e61c37ebdc69a737c35ed0",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 4964606,
"upload_time": "2025-07-29T18:38:27",
"upload_time_iso_8601": "2025-07-29T18:38:27.045270Z",
"url": "https://files.pythonhosted.org/packages/6a/d5/05861ede5d299f6599f86e6bc1291714e2116d96df003cfe23cc54bcc568/ml_dtypes-0.5.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "dbdc72992b68de367741bfab8df3b3fe7c29f982b7279d341aa5bf3e7ef737ea",
"md5": "a3d32ad8b98409493c834eb198673e38",
"sha256": "c3f5ae0309d9f888fd825c2e9d0241102fadaca81d888f26f845bc8c13c1e4ee"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a3d32ad8b98409493c834eb198673e38",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 4938435,
"upload_time": "2025-07-29T18:38:29",
"upload_time_iso_8601": "2025-07-29T18:38:29.193768Z",
"url": "https://files.pythonhosted.org/packages/db/dc/72992b68de367741bfab8df3b3fe7c29f982b7279d341aa5bf3e7ef737ea/ml_dtypes-0.5.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "811cd27a930bca31fb07d975a2d7eaf3404f9388114463b9f15032813c98f893",
"md5": "77aa4befc5d2a8a04c57640af0897e3d",
"sha256": "58e39349d820b5702bb6f94ea0cb2dc8ec62ee81c0267d9622067d8333596a46"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "77aa4befc5d2a8a04c57640af0897e3d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 206334,
"upload_time": "2025-07-29T18:38:30",
"upload_time_iso_8601": "2025-07-29T18:38:30.687906Z",
"url": "https://files.pythonhosted.org/packages/81/1c/d27a930bca31fb07d975a2d7eaf3404f9388114463b9f15032813c98f893/ml_dtypes-0.5.3-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1ad86922499effa616012cb8dc445280f66d100a7ff39b35c864cfca019b3f89",
"md5": "2af1e42744381f133bb97c07da21e48a",
"sha256": "66c2756ae6cfd7f5224e355c893cfd617fa2f747b8bbd8996152cbdebad9a184"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp311-cp311-win_arm64.whl",
"has_sig": false,
"md5_digest": "2af1e42744381f133bb97c07da21e48a",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 157584,
"upload_time": "2025-07-29T18:38:32",
"upload_time_iso_8601": "2025-07-29T18:38:32.187257Z",
"url": "https://files.pythonhosted.org/packages/1a/d8/6922499effa616012cb8dc445280f66d100a7ff39b35c864cfca019b3f89/ml_dtypes-0.5.3-cp311-cp311-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0debbc07c88a6ab002b4635e44585d80fa0b350603f11a2097c9d1bfacc03357",
"md5": "a8b2dc8b299d86aed5dfd21055091cca",
"sha256": "156418abeeda48ea4797db6776db3c5bdab9ac7be197c1233771e0880c304057"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp312-cp312-macosx_10_13_universal2.whl",
"has_sig": false,
"md5_digest": "a8b2dc8b299d86aed5dfd21055091cca",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 663864,
"upload_time": "2025-07-29T18:38:33",
"upload_time_iso_8601": "2025-07-29T18:38:33.777478Z",
"url": "https://files.pythonhosted.org/packages/0d/eb/bc07c88a6ab002b4635e44585d80fa0b350603f11a2097c9d1bfacc03357/ml_dtypes-0.5.3-cp312-cp312-macosx_10_13_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cf8911af9b0f21b99e6386b6581ab40fb38d03225f9de5f55cf52097047e2826",
"md5": "b64c573fccaf555a9f921cfdcfe8f7d5",
"sha256": "1db60c154989af253f6c4a34e8a540c2c9dce4d770784d426945e09908fbb177"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "b64c573fccaf555a9f921cfdcfe8f7d5",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 4951313,
"upload_time": "2025-07-29T18:38:36",
"upload_time_iso_8601": "2025-07-29T18:38:36.450954Z",
"url": "https://files.pythonhosted.org/packages/cf/89/11af9b0f21b99e6386b6581ab40fb38d03225f9de5f55cf52097047e2826/ml_dtypes-0.5.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d8a9b98b86426c24900b0c754aad006dce2863df7ce0bb2bcc2c02f9cc7e8489",
"md5": "892a7db41faf6973fdc3d26f221316b6",
"sha256": "1b255acada256d1fa8c35ed07b5f6d18bc21d1556f842fbc2d5718aea2cd9e55"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "892a7db41faf6973fdc3d26f221316b6",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 4928805,
"upload_time": "2025-07-29T18:38:38",
"upload_time_iso_8601": "2025-07-29T18:38:38.290534Z",
"url": "https://files.pythonhosted.org/packages/d8/a9/b98b86426c24900b0c754aad006dce2863df7ce0bb2bcc2c02f9cc7e8489/ml_dtypes-0.5.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "50c185e6be4fc09c6175f36fb05a45917837f30af9a5146a5151cb3a3f0f9e09",
"md5": "6e7c2fd52d0140e92a291d4f58406f42",
"sha256": "da65e5fd3eea434ccb8984c3624bc234ddcc0d9f4c81864af611aaebcc08a50e"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "6e7c2fd52d0140e92a291d4f58406f42",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 208182,
"upload_time": "2025-07-29T18:38:39",
"upload_time_iso_8601": "2025-07-29T18:38:39.720846Z",
"url": "https://files.pythonhosted.org/packages/50/c1/85e6be4fc09c6175f36fb05a45917837f30af9a5146a5151cb3a3f0f9e09/ml_dtypes-0.5.3-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9e17cf5326d6867be057f232d0610de1458f70a8ce7b6290e4b4a277ea62b4cd",
"md5": "08dc9c7ac2dd04ad44a9634b922f14ce",
"sha256": "8bb9cd1ce63096567f5f42851f5843b5a0ea11511e50039a7649619abfb4ba6d"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp312-cp312-win_arm64.whl",
"has_sig": false,
"md5_digest": "08dc9c7ac2dd04ad44a9634b922f14ce",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 161560,
"upload_time": "2025-07-29T18:38:41",
"upload_time_iso_8601": "2025-07-29T18:38:41.072289Z",
"url": "https://files.pythonhosted.org/packages/9e/17/cf5326d6867be057f232d0610de1458f70a8ce7b6290e4b4a277ea62b4cd/ml_dtypes-0.5.3-cp312-cp312-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2d871bcc98a66de7b2455dfb292f271452cac9edc4e870796e0d87033524d790",
"md5": "daee6437b30a982a0d8d6a64133643b2",
"sha256": "5103856a225465371fe119f2fef737402b705b810bd95ad5f348e6e1a6ae21af"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313-macosx_10_13_universal2.whl",
"has_sig": false,
"md5_digest": "daee6437b30a982a0d8d6a64133643b2",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 663781,
"upload_time": "2025-07-29T18:38:42",
"upload_time_iso_8601": "2025-07-29T18:38:42.984574Z",
"url": "https://files.pythonhosted.org/packages/2d/87/1bcc98a66de7b2455dfb292f271452cac9edc4e870796e0d87033524d790/ml_dtypes-0.5.3-cp313-cp313-macosx_10_13_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fd2cbd2a79ba7c759ee192b5601b675b180a3fd6ccf48ffa27fe1782d280f1a7",
"md5": "6d8c7a069bd8ec7f23b4ed26c8dd240c",
"sha256": "4cae435a68861660af81fa3c5af16b70ca11a17275c5b662d9c6f58294e0f113"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "6d8c7a069bd8ec7f23b4ed26c8dd240c",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 4956217,
"upload_time": "2025-07-29T18:38:44",
"upload_time_iso_8601": "2025-07-29T18:38:44.650277Z",
"url": "https://files.pythonhosted.org/packages/fd/2c/bd2a79ba7c759ee192b5601b675b180a3fd6ccf48ffa27fe1782d280f1a7/ml_dtypes-0.5.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "14f3091ba84e5395d7fe5b30c081a44dec881cd84b408db1763ee50768b2ab63",
"md5": "efaf1b869f623291ea7b05ac22031a67",
"sha256": "6936283b56d74fbec431ca57ce58a90a908fdbd14d4e2d22eea6d72bb208a7b7"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "efaf1b869f623291ea7b05ac22031a67",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 4933109,
"upload_time": "2025-07-29T18:38:46",
"upload_time_iso_8601": "2025-07-29T18:38:46.405419Z",
"url": "https://files.pythonhosted.org/packages/14/f3/091ba84e5395d7fe5b30c081a44dec881cd84b408db1763ee50768b2ab63/ml_dtypes-0.5.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1291e6c7a0d67a152b9330445f9f0cf8ae6eee9b83f990b8c57fe74631e42a90",
"md5": "a6c37cea54c021ff0fdb5224fe207870",
"sha256": "93c36a08a6d158db44f2eb9ce3258e53f24a9a4a695325a689494f0fdbc71770"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313t-macosx_10_13_universal2.whl",
"has_sig": false,
"md5_digest": "a6c37cea54c021ff0fdb5224fe207870",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 689321,
"upload_time": "2025-07-29T18:38:52",
"upload_time_iso_8601": "2025-07-29T18:38:52.030637Z",
"url": "https://files.pythonhosted.org/packages/12/91/e6c7a0d67a152b9330445f9f0cf8ae6eee9b83f990b8c57fe74631e42a90/ml_dtypes-0.5.3-cp313-cp313t-macosx_10_13_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9e6cb7b94b84a104a5be1883305b87d4c6bd6ae781504474b4cca067cb2340ec",
"md5": "01579d0ee2ab1880844a38397d632f94",
"sha256": "0e44a3761f64bc009d71ddb6d6c71008ba21b53ab6ee588dadab65e2fa79eafc"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "01579d0ee2ab1880844a38397d632f94",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 5274495,
"upload_time": "2025-07-29T18:38:53",
"upload_time_iso_8601": "2025-07-29T18:38:53.797085Z",
"url": "https://files.pythonhosted.org/packages/9e/6c/b7b94b84a104a5be1883305b87d4c6bd6ae781504474b4cca067cb2340ec/ml_dtypes-0.5.3-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5b386266604dffb43378055394ea110570cf261a49876fc48f548dfe876f34cc",
"md5": "4524ffcb73baaba6126673890ac5a2e3",
"sha256": "bdf40d2aaabd3913dec11840f0d0ebb1b93134f99af6a0a4fd88ffe924928ab4"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "4524ffcb73baaba6126673890ac5a2e3",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 5285422,
"upload_time": "2025-07-29T18:38:56",
"upload_time_iso_8601": "2025-07-29T18:38:56.603094Z",
"url": "https://files.pythonhosted.org/packages/5b/38/6266604dffb43378055394ea110570cf261a49876fc48f548dfe876f34cc/ml_dtypes-0.5.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bc24054036dbe32c43295382c90a1363241684c4d6aaa1ecc3df26bd0c8d5053",
"md5": "688f58ea251b55965b860902c854a6b9",
"sha256": "d0f730a17cf4f343b2c7ad50cee3bd19e969e793d2be6ed911f43086460096e4"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "688f58ea251b55965b860902c854a6b9",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 208187,
"upload_time": "2025-07-29T18:38:48",
"upload_time_iso_8601": "2025-07-29T18:38:48.240146Z",
"url": "https://files.pythonhosted.org/packages/bc/24/054036dbe32c43295382c90a1363241684c4d6aaa1ecc3df26bd0c8d5053/ml_dtypes-0.5.3-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a63d7dc3ec6794a4a9004c765e0c341e32355840b698f73fd2daff46f128afc1",
"md5": "aff79bf8d4082837083d4e895360b914",
"sha256": "2db74788fc01914a3c7f7da0763427280adfc9cd377e9604b6b64eb8097284bd"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp313-cp313-win_arm64.whl",
"has_sig": false,
"md5_digest": "aff79bf8d4082837083d4e895360b914",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 161559,
"upload_time": "2025-07-29T18:38:50",
"upload_time_iso_8601": "2025-07-29T18:38:50.493215Z",
"url": "https://files.pythonhosted.org/packages/a6/3d/7dc3ec6794a4a9004c765e0c341e32355840b698f73fd2daff46f128afc1/ml_dtypes-0.5.3-cp313-cp313-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7c888612ff177d043a474b9408f0382605d881eeb4125ba89d4d4b3286573a83",
"md5": "9f9a237581d7d5a6a5cef8e4fab1aafd",
"sha256": "aec640bd94c4c85c0d11e2733bd13cbb10438fb004852996ec0efbc6cacdaf70"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314-macosx_10_13_universal2.whl",
"has_sig": false,
"md5_digest": "9f9a237581d7d5a6a5cef8e4fab1aafd",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 661182,
"upload_time": "2025-07-29T18:38:58",
"upload_time_iso_8601": "2025-07-29T18:38:58.414636Z",
"url": "https://files.pythonhosted.org/packages/7c/88/8612ff177d043a474b9408f0382605d881eeb4125ba89d4d4b3286573a83/ml_dtypes-0.5.3-cp314-cp314-macosx_10_13_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6f2b0569a5e88b29240d373e835107c94ae9256fb2191d3156b43b2601859eff",
"md5": "fbb3c79dfad6d957a31c7d87348e6cf1",
"sha256": "bda32ce212baa724e03c68771e5c69f39e584ea426bfe1a701cb01508ffc7035"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "fbb3c79dfad6d957a31c7d87348e6cf1",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 4956187,
"upload_time": "2025-07-29T18:39:00",
"upload_time_iso_8601": "2025-07-29T18:39:00.611954Z",
"url": "https://files.pythonhosted.org/packages/6f/2b/0569a5e88b29240d373e835107c94ae9256fb2191d3156b43b2601859eff/ml_dtypes-0.5.3-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5166273c2a06ae44562b104b61e6b14444da00061fd87652506579d7eb2c40b1",
"md5": "d611999003d588165a32cb33730b8981",
"sha256": "c205cac07d24a29840c163d6469f61069ce4b065518519216297fc2f261f8db9"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "d611999003d588165a32cb33730b8981",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 4930911,
"upload_time": "2025-07-29T18:39:02",
"upload_time_iso_8601": "2025-07-29T18:39:02.405630Z",
"url": "https://files.pythonhosted.org/packages/51/66/273c2a06ae44562b104b61e6b14444da00061fd87652506579d7eb2c40b1/ml_dtypes-0.5.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5321783dfb51f40d2660afeb9bccf3612b99f6a803d980d2a09132b0f9d216ab",
"md5": "f852e106eb8fe08e03009c92dca8b152",
"sha256": "e12e29764a0e66a7a31e9b8bf1de5cc0423ea72979f45909acd4292de834ccd3"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314t-macosx_10_13_universal2.whl",
"has_sig": false,
"md5_digest": "f852e106eb8fe08e03009c92dca8b152",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 689324,
"upload_time": "2025-07-29T18:39:07",
"upload_time_iso_8601": "2025-07-29T18:39:07.567946Z",
"url": "https://files.pythonhosted.org/packages/53/21/783dfb51f40d2660afeb9bccf3612b99f6a803d980d2a09132b0f9d216ab/ml_dtypes-0.5.3-cp314-cp314t-macosx_10_13_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "09f7a82d249c711abf411ac027b7163f285487f5e615c3e0716c61033ce996ab",
"md5": "f8ec07b6637976ac043594af716c1ee3",
"sha256": "19f6c3a4f635c2fc9e2aa7d91416bd7a3d649b48350c51f7f715a09370a90d93"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "f8ec07b6637976ac043594af716c1ee3",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 5275917,
"upload_time": "2025-07-29T18:39:09",
"upload_time_iso_8601": "2025-07-29T18:39:09.339510Z",
"url": "https://files.pythonhosted.org/packages/09/f7/a82d249c711abf411ac027b7163f285487f5e615c3e0716c61033ce996ab/ml_dtypes-0.5.3-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7f3c541c4b30815ab90ebfbb51df15d0b4254f2f9f1e2b4907ab229300d5e6f2",
"md5": "cb258a5983065898947945064db366c5",
"sha256": "5ab039ffb40f3dc0aeeeba84fd6c3452781b5e15bef72e2d10bcb33e4bbffc39"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "cb258a5983065898947945064db366c5",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 5285284,
"upload_time": "2025-07-29T18:39:11",
"upload_time_iso_8601": "2025-07-29T18:39:11.532881Z",
"url": "https://files.pythonhosted.org/packages/7f/3c/541c4b30815ab90ebfbb51df15d0b4254f2f9f1e2b4907ab229300d5e6f2/ml_dtypes-0.5.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "93ab606be3e87dc0821bd360c8c1ee46108025c31a4f96942b63907bb441b87d",
"md5": "3fd871cb70a4e3684f5d79271cf088ee",
"sha256": "cd7c0bb22d4ff86d65ad61b5dd246812e8993fbc95b558553624c33e8b6903ea"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314-win_amd64.whl",
"has_sig": false,
"md5_digest": "3fd871cb70a4e3684f5d79271cf088ee",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 216664,
"upload_time": "2025-07-29T18:39:03",
"upload_time_iso_8601": "2025-07-29T18:39:03.927189Z",
"url": "https://files.pythonhosted.org/packages/93/ab/606be3e87dc0821bd360c8c1ee46108025c31a4f96942b63907bb441b87d/ml_dtypes-0.5.3-cp314-cp314-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "30a2e900690ca47d01dffffd66375c5de8c4f8ced0f1ef809ccd3b25b3e6b8fa",
"md5": "b1e212cc2f2289b13cdd10166f4f0228",
"sha256": "9d55ea7f7baf2aed61bf1872116cefc9d0c3693b45cae3916897ee27ef4b835e"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp314-cp314-win_arm64.whl",
"has_sig": false,
"md5_digest": "b1e212cc2f2289b13cdd10166f4f0228",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.9",
"size": 160203,
"upload_time": "2025-07-29T18:39:05",
"upload_time_iso_8601": "2025-07-29T18:39:05.671347Z",
"url": "https://files.pythonhosted.org/packages/30/a2/e900690ca47d01dffffd66375c5de8c4f8ced0f1ef809ccd3b25b3e6b8fa/ml_dtypes-0.5.3-cp314-cp314-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "192dc61af51173083bbf2a3b0f1a1a01d50ef1830436880027433d1b75271083",
"md5": "87749cc4f0df953d38bfefbf9df19888",
"sha256": "5ee72568d46b9533ad54f78b1e1f3067c0534c5065120ea8ecc6f210d22748b3"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp39-cp39-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "87749cc4f0df953d38bfefbf9df19888",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 663552,
"upload_time": "2025-07-29T18:39:13",
"upload_time_iso_8601": "2025-07-29T18:39:13.102759Z",
"url": "https://files.pythonhosted.org/packages/19/2d/c61af51173083bbf2a3b0f1a1a01d50ef1830436880027433d1b75271083/ml_dtypes-0.5.3-cp39-cp39-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "610ea628f2aefd719745e8a13492375a55cedea77c0cfc917b1ce11bde435c68",
"md5": "66a69b9836dd708a0ed687b9ad600d78",
"sha256": "01de48de4537dc3c46e684b969a40ec36594e7eeb7c69e9a093e7239f030a28a"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "66a69b9836dd708a0ed687b9ad600d78",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 4952704,
"upload_time": "2025-07-29T18:39:14",
"upload_time_iso_8601": "2025-07-29T18:39:14.829413Z",
"url": "https://files.pythonhosted.org/packages/61/0e/a628f2aefd719745e8a13492375a55cedea77c0cfc917b1ce11bde435c68/ml_dtypes-0.5.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f82e5ba92f1f99d1f5f62bffec614a5b8161e55c3961257c902fa26dbe909baa",
"md5": "0f9857476897b58bad5008816fcc5676",
"sha256": "8b1a6e231b0770f2894910f1dce6d2f31d65884dbf7668f9b08d73623cdca909"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0f9857476897b58bad5008816fcc5676",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 4923538,
"upload_time": "2025-07-29T18:39:16",
"upload_time_iso_8601": "2025-07-29T18:39:16.581355Z",
"url": "https://files.pythonhosted.org/packages/f8/2e/5ba92f1f99d1f5f62bffec614a5b8161e55c3961257c902fa26dbe909baa/ml_dtypes-0.5.3-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "703bf801c69027866ea6e387224551185fedef62ad8e2e71181ec0d9dda905f7",
"md5": "6c888a4b2011389510dab723e9dba413",
"sha256": "a4f39b9bf6555fab9bfb536cf5fdd1c1c727e8d22312078702e9ff005354b37f"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "6c888a4b2011389510dab723e9dba413",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 206567,
"upload_time": "2025-07-29T18:39:18",
"upload_time_iso_8601": "2025-07-29T18:39:18.047291Z",
"url": "https://files.pythonhosted.org/packages/70/3b/f801c69027866ea6e387224551185fedef62ad8e2e71181ec0d9dda905f7/ml_dtypes-0.5.3-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "78a7aad060393123cfb383956dca68402aff3db1e1caffd5764887ed5153f41b",
"md5": "581d831757c3a1223efc6d765aff9cd6",
"sha256": "95ce33057ba4d05df50b1f3cfefab22e351868a843b3b15a46c65836283670c9"
},
"downloads": -1,
"filename": "ml_dtypes-0.5.3.tar.gz",
"has_sig": false,
"md5_digest": "581d831757c3a1223efc6d765aff9cd6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 692316,
"upload_time": "2025-07-29T18:39:19",
"upload_time_iso_8601": "2025-07-29T18:39:19.454582Z",
"url": "https://files.pythonhosted.org/packages/78/a7/aad060393123cfb383956dca68402aff3db1e1caffd5764887ed5153f41b/ml_dtypes-0.5.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-29 18:39:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jax-ml",
"github_project": "ml_dtypes",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ml-dtypes"
}