# ML Metadata
[![Python](https://img.shields.io/badge/python%7C3.9%7C3.10%7C3.11-blue)](https://github.com/google/ml-metadata)
[![PyPI](https://badge.fury.io/py/ml-metadata.svg)](https://badge.fury.io/py/ml-metadata)
*ML Metadata (MLMD)* is a library for recording and retrieving metadata
associated with ML developer and data scientist workflows.
NOTE: ML Metadata may be backwards incompatible before version 1.0.
## Getting Started
For more background on MLMD and instructions on using it, see the
[getting started guide](https://github.com/google/ml-metadata/blob/master/g3doc/get_started.md)
## Installing from PyPI
The recommended way to install ML Metadata is to use the
[PyPI package](https://pypi.org/project/ml-metadata/):
```bash
pip install ml-metadata
```
Then import the relevant packages:
```python
from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2
```
### Nightly Packages
ML Metadata (MLMD) also hosts nightly packages at
https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest
nightly package, please use the following command:
```bash
pip install --extra-index-url https://pypi-nightly.tensorflow.org/simple ml-metadata
```
## Installing with Docker
This is the recommended way to build ML Metadata under Linux, and is
continuously tested at Google.
Please first install `docker` and `docker-compose` by following the directions:
[docker](https://docs.docker.com/install/);
[docker-compose](https://docs.docker.com/compose/install/).
Then, run the following at the project root:
```bash
DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}
```
where `PY_VERSION` is one of `{39, 310, 311}`.
A wheel will be produced under `dist/`, and installed as follows:
```shell
pip install dist/*.whl
```
## Installing from source
### 1. Prerequisites
To compile and use ML Metadata, you need to set up some prerequisites.
#### Install Bazel
If Bazel is not installed on your system, install it now by following [these
directions](https://bazel.build/versions/master/docs/install.html).
#### Install cmake
If cmake is not installed on your system, install it now by following [these
directions](https://cmake.org/install/).
### 2. Clone ML Metadata repository
```shell
git clone https://github.com/google/ml-metadata
cd ml-metadata
```
Note that these instructions will install the latest master branch of ML
Metadata. If you want to install a specific branch (such as a release branch),
pass `-b <branchname>` to the `git clone` command.
### 3. Build the pip package
ML Metadata uses Bazel to build the pip package from source:
```shell
python setup.py bdist_wheel
```
You can find the generated `.whl` file in the `dist` subdirectory.
### 4. Install the pip package
```shell
pip install dist/*.whl
```
### 5.(Optional) Build the grpc server
ML Metadata uses Bazel to build the c++ binary from source:
```shell
bazel build -c opt --define grpc_no_ares=true //ml_metadata/metadata_store:metadata_store_server
```
## Supported platforms
MLMD is built and tested on the following 64-bit operating systems:
* macOS 10.14.6 (Mojave) or later.
* Ubuntu 20.04 or later.
* [DEPRECATED] Windows 10 or later. For a Windows-compatible library, please
refer to MLMD 1.14.0 or earlier versions.
Raw data
{
"_id": null,
"home_page": "https://github.com/google/ml-metadata",
"name": "ml-metadata",
"maintainer": null,
"docs_url": null,
"requires_python": "<4,>=3.9",
"maintainer_email": null,
"keywords": "machine learning metadata tfx",
"author": "Google LLC",
"author_email": "tensorflow-extended-dev@googlegroups.com",
"download_url": "https://github.com/google/ml-metadata/tags",
"platform": null,
"description": "\n# ML Metadata\n\n[![Python](https://img.shields.io/badge/python%7C3.9%7C3.10%7C3.11-blue)](https://github.com/google/ml-metadata)\n[![PyPI](https://badge.fury.io/py/ml-metadata.svg)](https://badge.fury.io/py/ml-metadata)\n\n*ML Metadata (MLMD)* is a library for recording and retrieving metadata\nassociated with ML developer and data scientist workflows.\n\nNOTE: ML Metadata may be backwards incompatible before version 1.0.\n\n## Getting Started\n\nFor more background on MLMD and instructions on using it, see the\n[getting started guide](https://github.com/google/ml-metadata/blob/master/g3doc/get_started.md)\n\n## Installing from PyPI\n\nThe recommended way to install ML Metadata is to use the\n[PyPI package](https://pypi.org/project/ml-metadata/):\n\n```bash\npip install ml-metadata\n```\n\nThen import the relevant packages:\n\n```python\nfrom ml_metadata import metadata_store\nfrom ml_metadata.proto import metadata_store_pb2\n```\n\n### Nightly Packages\n\nML Metadata (MLMD) also hosts nightly packages at\nhttps://pypi-nightly.tensorflow.org on Google Cloud. To install the latest\nnightly package, please use the following command:\n\n```bash\npip install --extra-index-url https://pypi-nightly.tensorflow.org/simple ml-metadata\n```\n\n## Installing with Docker\n\nThis is the recommended way to build ML Metadata under Linux, and is\ncontinuously tested at Google.\n\nPlease first install `docker` and `docker-compose` by following the directions:\n[docker](https://docs.docker.com/install/);\n[docker-compose](https://docs.docker.com/compose/install/).\n\nThen, run the following at the project root:\n\n```bash\nDOCKER_SERVICE=manylinux-python${PY_VERSION}\nsudo docker-compose build ${DOCKER_SERVICE}\nsudo docker-compose run ${DOCKER_SERVICE}\n```\n\nwhere `PY_VERSION` is one of `{39, 310, 311}`.\n\nA wheel will be produced under `dist/`, and installed as follows:\n\n```shell\npip install dist/*.whl\n```\n\n## Installing from source\n\n\n### 1. Prerequisites\n\nTo compile and use ML Metadata, you need to set up some prerequisites.\n\n\n#### Install Bazel\n\nIf Bazel is not installed on your system, install it now by following [these\ndirections](https://bazel.build/versions/master/docs/install.html).\n\n#### Install cmake\nIf cmake is not installed on your system, install it now by following [these\ndirections](https://cmake.org/install/).\n\n### 2. Clone ML Metadata repository\n\n```shell\ngit clone https://github.com/google/ml-metadata\ncd ml-metadata\n```\n\nNote that these instructions will install the latest master branch of ML\nMetadata. If you want to install a specific branch (such as a release branch),\npass `-b <branchname>` to the `git clone` command.\n\n### 3. Build the pip package\n\nML Metadata uses Bazel to build the pip package from source:\n\n```shell\npython setup.py bdist_wheel\n```\n\nYou can find the generated `.whl` file in the `dist` subdirectory.\n\n### 4. Install the pip package\n\n```shell\npip install dist/*.whl\n```\n\n### 5.(Optional) Build the grpc server\n\nML Metadata uses Bazel to build the c++ binary from source:\n\n```shell\nbazel build -c opt --define grpc_no_ares=true //ml_metadata/metadata_store:metadata_store_server\n```\n\n## Supported platforms\n\nMLMD is built and tested on the following 64-bit operating systems:\n\n* macOS 10.14.6 (Mojave) or later.\n* Ubuntu 20.04 or later.\n* [DEPRECATED] Windows 10 or later. For a Windows-compatible library, please\n refer to MLMD 1.14.0 or earlier versions.\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "A library for maintaining metadata for artifacts.",
"version": "1.16.0",
"project_urls": {
"Download": "https://github.com/google/ml-metadata/tags",
"Homepage": "https://github.com/google/ml-metadata"
},
"split_keywords": [
"machine",
"learning",
"metadata",
"tfx"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1eeeca2b19bc255ae6a5e3e1f88a6a15a8a8b294f91bb8fc36f201af83fc41c6",
"md5": "bdf28b1c79cbcbbd35102d0111a86378",
"sha256": "1e4d559befa38b4d464565c7fafd7cd30b6acd39f236e1d0224ea22cdf0fa5e6"
},
"downloads": -1,
"filename": "ml_metadata-1.16.0-cp310-cp310-macosx_12_0_x86_64.whl",
"has_sig": false,
"md5_digest": "bdf28b1c79cbcbbd35102d0111a86378",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.9",
"size": 20059563,
"upload_time": "2024-10-01T23:23:40",
"upload_time_iso_8601": "2024-10-01T23:23:40.963820Z",
"url": "https://files.pythonhosted.org/packages/1e/ee/ca2b19bc255ae6a5e3e1f88a6a15a8a8b294f91bb8fc36f201af83fc41c6/ml_metadata-1.16.0-cp310-cp310-macosx_12_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "82ff783d6dd19c6d7efa5adcc225e9cfc61d38496cd4f07d4b78ecb9decf84f8",
"md5": "4bb9e02c4278318000a6f44941494c5b",
"sha256": "cd93577d76e4158cce42c3b98cc2a9d88955137f846e17a2fec3ffe72ba9f0bb"
},
"downloads": -1,
"filename": "ml_metadata-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "4bb9e02c4278318000a6f44941494c5b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.9",
"size": 7478057,
"upload_time": "2024-10-01T23:08:54",
"upload_time_iso_8601": "2024-10-01T23:08:54.367677Z",
"url": "https://files.pythonhosted.org/packages/82/ff/783d6dd19c6d7efa5adcc225e9cfc61d38496cd4f07d4b78ecb9decf84f8/ml_metadata-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5666c876cf20d85d5e8270cdd49457d6bcc5a4f806141a26cd98d8b38d48e71e",
"md5": "44db6db6ed6e65e0c60b0cdbf67300b9",
"sha256": "e0a0cc74c1e213ad305cfa562445c156aee70400ccadb249b77e3c8b2da53904"
},
"downloads": -1,
"filename": "ml_metadata-1.16.0-cp311-cp311-macosx_12_0_x86_64.whl",
"has_sig": false,
"md5_digest": "44db6db6ed6e65e0c60b0cdbf67300b9",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.9",
"size": 20059519,
"upload_time": "2024-10-01T23:18:01",
"upload_time_iso_8601": "2024-10-01T23:18:01.045030Z",
"url": "https://files.pythonhosted.org/packages/56/66/c876cf20d85d5e8270cdd49457d6bcc5a4f806141a26cd98d8b38d48e71e/ml_metadata-1.16.0-cp311-cp311-macosx_12_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b8d4e9a39e4aaccf0b99f584659549ab4fb8e008ef66e1fdbfa961685142ff33",
"md5": "1f0de20787a09c9a9eeec1f1e61e02a9",
"sha256": "e5d2cd458030df565867957f8dc961dbe9298e3fa22c7f9b86c850ffa7915465"
},
"downloads": -1,
"filename": "ml_metadata-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "1f0de20787a09c9a9eeec1f1e61e02a9",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.9",
"size": 7478101,
"upload_time": "2024-10-01T23:12:28",
"upload_time_iso_8601": "2024-10-01T23:12:28.445493Z",
"url": "https://files.pythonhosted.org/packages/b8/d4/e9a39e4aaccf0b99f584659549ab4fb8e008ef66e1fdbfa961685142ff33/ml_metadata-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b26ebfdf9ccc97e3066a31c6a34fed84f9166e3dca625afe9d6be80b08ec146f",
"md5": "3cc1b3065ec150ab131a78b846928c33",
"sha256": "8ebc8172cd360688f9e41bb1d338c7d24f81e0907ac2ac7be50aed6200274993"
},
"downloads": -1,
"filename": "ml_metadata-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3cc1b3065ec150ab131a78b846928c33",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4,>=3.9",
"size": 7478209,
"upload_time": "2024-10-01T23:10:12",
"upload_time_iso_8601": "2024-10-01T23:10:12.195242Z",
"url": "https://files.pythonhosted.org/packages/b2/6e/bfdf9ccc97e3066a31c6a34fed84f9166e3dca625afe9d6be80b08ec146f/ml_metadata-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-01 23:23:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "google",
"github_project": "ml-metadata",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ml-metadata"
}