ml-solution


Nameml-solution JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/JiahongZhang/ml_solution
SummaryA mechine learning pipeline lib.
upload_time2024-01-08 11:13:10
maintainer
docs_urlNone
authorhugo
requires_python>=3.10
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ML Solution

[pypi](https://pypi.org/project/ml-solution/) [github](https://github.com/JiahongZhang/ml_solution) [modelscope](https://modelscope.cn/models/hugo42/ml_solution/summary)

This package is used to quickly build a pipline for mechine learning.

## Quick Start

### Installation

Easy installation with pip:

```bash
pip install ml_solution
```

### Code Sample

The code below shows how to use ml_solution to build flexible deep learning model frame quickly:

```python
import torch
from torch import optim
import torch.nn as nn
from dataset import creat_loader
import modeling
from ml_solution.dl_tools import engine, engine_utils, train_utils
from ml_solution import data_utils
from transformers import XLMRobertaTokenizer

train_config = data_utils.json_load('./train_config.json')
dataset_config = data_utils.json_load('./dataset_config.json')

train_loader = creat_loader(dataset_config['train_json_path'],)
valid_loader = creat_loader(dataset_config['valid_json_path'])
dataloaders = {
    'train':train_loader,
    'valid':valid_loader
}

model = modeling.get_model()
optimizer = optim.Adam(model.parameters(), lr=train_config['lr'])
criterion = train_utils.DictInputWarpper(nn.CrossEntropyLoss(), 'logit', 'label')

metric_grader = engine_utils.ConfusionMetrics(
    num_classes=4, 
    metrics_list=train_config['metrics_list']
    )
loss_grader = engine_utils.LossRecorder()
computers = {
    'conf_metrics': metric_grader, 
    'loss': loss_grader
}
grader = engine_utils.Grader(computers)


wandb_init_config = data_utils.json_manipulate_keys(
    train_config, 
    ['lr', 'batch_size', "architecture"], 
    keep=True
    )
wandb_init_config['criterion'] = criterion.module.__class__.__name__
wandb_init_config['optimizer'] = optimizer.__class__.__name__
logger = engine_utils.WandbLogger(
    config=wandb_init_config, project=train_config['project'])

handler = engine.HandlerSaveModel(
    metric_name="ACC", 
    log_root=train_config['log_root'], 
    version=logger.version,
    ideal_th=5
    )

trainer = engine.TorchTrainer(
    model, dataloaders, criterion, 
    optimizer, device=device, mix_pre=train_config['mix_pre']
    )

train_pipeline = engine.TrainPipeline(
    trainer, grader, logger, 
    handler=handler
    )

train_pipeline.train_epoches(train_config['epoches'])


```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JiahongZhang/ml_solution",
    "name": "ml-solution",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "",
    "author": "hugo",
    "author_email": "hugo279@foxmail.com",
    "download_url": "",
    "platform": null,
    "description": "# ML Solution\n\n[pypi](https://pypi.org/project/ml-solution/) [github](https://github.com/JiahongZhang/ml_solution) [modelscope](https://modelscope.cn/models/hugo42/ml_solution/summary)\n\nThis package is used to quickly build a pipline for mechine learning.\n\n## Quick Start\n\n### Installation\n\nEasy installation with pip:\n\n```bash\npip install ml_solution\n```\n\n### Code Sample\n\nThe code below shows how to use ml_solution to build flexible deep learning model frame quickly:\n\n```python\nimport torch\nfrom torch import optim\nimport torch.nn as nn\nfrom dataset import creat_loader\nimport modeling\nfrom ml_solution.dl_tools import engine, engine_utils, train_utils\nfrom ml_solution import data_utils\nfrom transformers import XLMRobertaTokenizer\n\ntrain_config = data_utils.json_load('./train_config.json')\ndataset_config = data_utils.json_load('./dataset_config.json')\n\ntrain_loader = creat_loader(dataset_config['train_json_path'],)\nvalid_loader = creat_loader(dataset_config['valid_json_path'])\ndataloaders = {\n    'train':train_loader,\n    'valid':valid_loader\n}\n\nmodel = modeling.get_model()\noptimizer = optim.Adam(model.parameters(), lr=train_config['lr'])\ncriterion = train_utils.DictInputWarpper(nn.CrossEntropyLoss(), 'logit', 'label')\n\nmetric_grader = engine_utils.ConfusionMetrics(\n    num_classes=4, \n    metrics_list=train_config['metrics_list']\n    )\nloss_grader = engine_utils.LossRecorder()\ncomputers = {\n    'conf_metrics': metric_grader, \n    'loss': loss_grader\n}\ngrader = engine_utils.Grader(computers)\n\n\nwandb_init_config = data_utils.json_manipulate_keys(\n    train_config, \n    ['lr', 'batch_size', \"architecture\"], \n    keep=True\n    )\nwandb_init_config['criterion'] = criterion.module.__class__.__name__\nwandb_init_config['optimizer'] = optimizer.__class__.__name__\nlogger = engine_utils.WandbLogger(\n    config=wandb_init_config, project=train_config['project'])\n\nhandler = engine.HandlerSaveModel(\n    metric_name=\"ACC\", \n    log_root=train_config['log_root'], \n    version=logger.version,\n    ideal_th=5\n    )\n\ntrainer = engine.TorchTrainer(\n    model, dataloaders, criterion, \n    optimizer, device=device, mix_pre=train_config['mix_pre']\n    )\n\ntrain_pipeline = engine.TrainPipeline(\n    trainer, grader, logger, \n    handler=handler\n    )\n\ntrain_pipeline.train_epoches(train_config['epoches'])\n\n\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A mechine learning pipeline lib.",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/JiahongZhang/ml_solution"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "baacccfed3b56c77e2b4ed9ff83cdd4ed17d6a9f4a2fbe251af1c602c7ecdb59",
                "md5": "06012932224a50aa78d20fc10e8319fb",
                "sha256": "6d79a6a728a67e827a416df8bce1c63a87f104a6e5aeea3dc2edd830f6371f39"
            },
            "downloads": -1,
            "filename": "ml_solution-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "06012932224a50aa78d20fc10e8319fb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 19970,
            "upload_time": "2024-01-08T11:13:10",
            "upload_time_iso_8601": "2024-01-08T11:13:10.668656Z",
            "url": "https://files.pythonhosted.org/packages/ba/ac/ccfed3b56c77e2b4ed9ff83cdd4ed17d6a9f4a2fbe251af1c602c7ecdb59/ml_solution-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-08 11:13:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JiahongZhang",
    "github_project": "ml_solution",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ml-solution"
}
        
Elapsed time: 0.45759s