# Machine Learning Wrappers SDK for Python
### This package has been tested with Python 3.9, 3.10 and 3.11
The Machine Learning Wrappers SDK provides a unified wrapper for various ML frameworks - to have one uniform scikit-learn format predict and predict_proba functions.
Highlights of the package include:
- A dataset wrapper to handle scipy sparse, pandas and numpy datasets in a uniform manner.
- A model wrapper to handle models from various frameworks uniformly, including scikit-learn, tensorflow, pytorch, lightgbm and xgboost
Please see the github website for the documentation and sample notebooks:
https://github.com/microsoft/ml-wrappers
Raw data
{
"_id": null,
"home_page": "https://github.com/microsoft/ml-wrappers",
"name": "ml-wrappers",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Microsoft Corp",
"author_email": "ilmat@microsoft.com",
"download_url": "https://files.pythonhosted.org/packages/b0/03/a7e95a9973b2b1728c068707b3923ba256004249d3beac5b6c87832831c5/ml_wrappers-0.6.0.tar.gz",
"platform": null,
"description": "# Machine Learning Wrappers SDK for Python\n\n### This package has been tested with Python 3.9, 3.10 and 3.11\n\nThe Machine Learning Wrappers SDK provides a unified wrapper for various ML frameworks - to have one uniform scikit-learn format predict and predict_proba functions.\n\nHighlights of the package include:\n\n- A dataset wrapper to handle scipy sparse, pandas and numpy datasets in a uniform manner.\n- A model wrapper to handle models from various frameworks uniformly, including scikit-learn, tensorflow, pytorch, lightgbm and xgboost\n\nPlease see the github website for the documentation and sample notebooks:\nhttps://github.com/microsoft/ml-wrappers\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Machine Learning Wrappers SDK for Python",
"version": "0.6.0",
"project_urls": {
"Homepage": "https://github.com/microsoft/ml-wrappers"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "470b8e92f770673152834d017d14238df9346a0aca483d6ab27d653161c2b015",
"md5": "b0e5696b47c457b30eaa263d16e64371",
"sha256": "55356580aafa51b4b13af1d143cadb8eb0e1dda03dce0e56ac38cc11ad497446"
},
"downloads": -1,
"filename": "ml_wrappers-0.6.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b0e5696b47c457b30eaa263d16e64371",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 52186,
"upload_time": "2025-01-10T18:28:47",
"upload_time_iso_8601": "2025-01-10T18:28:47.953174Z",
"url": "https://files.pythonhosted.org/packages/47/0b/8e92f770673152834d017d14238df9346a0aca483d6ab27d653161c2b015/ml_wrappers-0.6.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b003a7e95a9973b2b1728c068707b3923ba256004249d3beac5b6c87832831c5",
"md5": "1f8c4798175a2419c954aa4abacd2315",
"sha256": "004033401c6563ed281b57f150f7ea6be9dfab556a309913cc0c1189d1a3c40e"
},
"downloads": -1,
"filename": "ml_wrappers-0.6.0.tar.gz",
"has_sig": false,
"md5_digest": "1f8c4798175a2419c954aa4abacd2315",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 40253,
"upload_time": "2025-01-10T18:28:50",
"upload_time_iso_8601": "2025-01-10T18:28:50.146385Z",
"url": "https://files.pythonhosted.org/packages/b0/03/a7e95a9973b2b1728c068707b3923ba256004249d3beac5b6c87832831c5/ml_wrappers-0.6.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-10 18:28:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "microsoft",
"github_project": "ml-wrappers",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ml-wrappers"
}