mlconfound


Namemlconfound JSON
Version 0.21.3 PyPI version JSON
download
home_pagehttps://mlconfound.readthedocs.io
SummaryTools for analyzing and quantifying effects of counfounder variables on machine learning model predictions.
upload_time2022-12-21 11:25:38
maintainer
docs_urlNone
authorTamas Spisak
requires_python>=3.7
licenseGPL-3.0-or-later
keywords machine learning predictive modelling confounding bias conditional independence confounder test
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mlconfound
[![GitHub license](https://img.shields.io/github/license/pni-lab/mlconfound.svg)](https://github.com/pni-lab/mlconfound/blob/master/LICENSE)
[![GitHub release](https://img.shields.io/github/release/pni-lab/mlconfound.svg)](https://github.com/pni-lab/mlconfound/releases/)
![GitHub CI](https://github.com/pni-lab/mlconfound/actions/workflows/ci.yml/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/mlconfound/badge/?version=latest)](https://mlconfound.readthedocs.io/en/latest/?badge=latest)
[![arXiv](https://img.shields.io/badge/arXiv-2111.00814-<COLOR>.svg)](https://arxiv.org/abs/2111.00814)
[![GitHub issues](https://img.shields.io/github/issues/pni-lab/mlconfound.svg)](https://GitHub.com/pni-lab/mlconfound/issues/)
[![GitHub issues-closed](https://img.shields.io/github/issues-closed/pni-lab/mlconfound.svg)](https://GitHub.com/pni-lab/mlconfound/issues?q=is%3Aissue+is%3Aclosed)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pni-lab/mlconfound/master?labpath=notebooks%2Fquickstart.ipynb)

Tools for analyzing and quantifying effects of counfounder variables on machine learning model predictions.
## Install
````
pip install mlconfound
````

## Usage

````
# y   : prediction target
# yhat: prediction
# c   : confounder

from mlconfound.stats import partial_confound_test

partial_confound_test(y, yhat, c)
````

Run the quickstart notebook in Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pni-lab/mlconfound/master?labpath=notebooks%2Fquickstart.ipynb)

Read the docs for more details.

## Documentation [![Documentation Status](https://readthedocs.org/projects/mlconfound/badge/?version=latest)](https://mlconfound.readthedocs.io/en/latest/?badge=latest)
https://mlconfound.readthedocs.io

## Citation
T. Spisak, Statistical quantification of confounding bias in predictive modelling, preprint on [arXiv:2111.00814](http://arxiv-export-lb.library.cornell.edu/abs/2111.00814), 2021.


            

Raw data

            {
    "_id": null,
    "home_page": "https://mlconfound.readthedocs.io",
    "name": "mlconfound",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "machine learning,predictive modelling,confounding bias,conditional independence,confounder test",
    "author": "Tamas Spisak",
    "author_email": "tamas.spisak@uni-due.de",
    "download_url": "https://files.pythonhosted.org/packages/c8/ec/04483efdbcb0b508c5c7d9247600ab20bb9124e1f027f93410b122a355e6/mlconfound-0.21.3.tar.gz",
    "platform": null,
    "description": "# mlconfound\n[![GitHub license](https://img.shields.io/github/license/pni-lab/mlconfound.svg)](https://github.com/pni-lab/mlconfound/blob/master/LICENSE)\n[![GitHub release](https://img.shields.io/github/release/pni-lab/mlconfound.svg)](https://github.com/pni-lab/mlconfound/releases/)\n![GitHub CI](https://github.com/pni-lab/mlconfound/actions/workflows/ci.yml/badge.svg)\n[![Documentation Status](https://readthedocs.org/projects/mlconfound/badge/?version=latest)](https://mlconfound.readthedocs.io/en/latest/?badge=latest)\n[![arXiv](https://img.shields.io/badge/arXiv-2111.00814-<COLOR>.svg)](https://arxiv.org/abs/2111.00814)\n[![GitHub issues](https://img.shields.io/github/issues/pni-lab/mlconfound.svg)](https://GitHub.com/pni-lab/mlconfound/issues/)\n[![GitHub issues-closed](https://img.shields.io/github/issues-closed/pni-lab/mlconfound.svg)](https://GitHub.com/pni-lab/mlconfound/issues?q=is%3Aissue+is%3Aclosed)\n[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pni-lab/mlconfound/master?labpath=notebooks%2Fquickstart.ipynb)\n\nTools for analyzing and quantifying effects of counfounder variables on machine learning model predictions.\n## Install\n````\npip install mlconfound\n````\n\n## Usage\n\n````\n# y   : prediction target\n# yhat: prediction\n# c   : confounder\n\nfrom mlconfound.stats import partial_confound_test\n\npartial_confound_test(y, yhat, c)\n````\n\nRun the quickstart notebook in Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pni-lab/mlconfound/master?labpath=notebooks%2Fquickstart.ipynb)\n\nRead the docs for more details.\n\n## Documentation [![Documentation Status](https://readthedocs.org/projects/mlconfound/badge/?version=latest)](https://mlconfound.readthedocs.io/en/latest/?badge=latest)\nhttps://mlconfound.readthedocs.io\n\n## Citation\nT. Spisak, Statistical quantification of confounding bias in predictive modelling, preprint on [arXiv:2111.00814](http://arxiv-export-lb.library.cornell.edu/abs/2111.00814), 2021.\n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "Tools for analyzing and quantifying effects of counfounder variables on machine learning model predictions.",
    "version": "0.21.3",
    "split_keywords": [
        "machine learning",
        "predictive modelling",
        "confounding bias",
        "conditional independence",
        "confounder test"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "fc63bdea444b7da20ff76c6561987506",
                "sha256": "8c04ddb8cd271a7024897cdf0128427d28b168f1ec166e130a47d5a68a838846"
            },
            "downloads": -1,
            "filename": "mlconfound-0.21.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fc63bdea444b7da20ff76c6561987506",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 23043,
            "upload_time": "2022-12-21T11:25:37",
            "upload_time_iso_8601": "2022-12-21T11:25:37.060566Z",
            "url": "https://files.pythonhosted.org/packages/cf/11/d4399523d7aef43eef31290907d104965d1e2ba24a526d4fcb75561f0c4e/mlconfound-0.21.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "294b5b1e5bcfd57941b71e652d335988",
                "sha256": "c692194fd6e50c1776129200cf92727c6153ecb3e4b3caaf54f871eb32e7cfed"
            },
            "downloads": -1,
            "filename": "mlconfound-0.21.3.tar.gz",
            "has_sig": false,
            "md5_digest": "294b5b1e5bcfd57941b71e652d335988",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 22675,
            "upload_time": "2022-12-21T11:25:38",
            "upload_time_iso_8601": "2022-12-21T11:25:38.264984Z",
            "url": "https://files.pythonhosted.org/packages/c8/ec/04483efdbcb0b508c5c7d9247600ab20bb9124e1f027f93410b122a355e6/mlconfound-0.21.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-21 11:25:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "mlconfound"
}
        
Elapsed time: 0.04188s