mlda


Namemlda JSON
Version 2025.1.31 PyPI version JSON
download
home_pagehttps://github.com/fzhu2e/mlda
Summarymlda: A Python package for Machine Learning-base Data Assimilation
upload_time2025-01-31 19:41:34
maintainerNone
docs_urlNone
authorFeng Zhu, Weimin Si
requires_pythonNone
licenseBSD-3
keywords machine learning data assimilation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mlda: A Python package for Machine Learning-based Data Assimilation

`mlda` is a Python package for Machine Learning-base Data Assimilation (DA).
It aims to provide a universal framework and the corresponding utilities for conducting reproducible data assimilation experiments using novel machine learning-based DA methods.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fzhu2e/mlda",
    "name": "mlda",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Machine Learning, Data Assimilation",
    "author": "Feng Zhu, Weimin Si",
    "author_email": "fengzhu@ucar.edu, weimin_si@brown.edu",
    "download_url": "https://files.pythonhosted.org/packages/0b/4c/c60b6189570b3179dbb1b050f3b7b291f723055d77cff2fe03271ef53b18/mlda-2025.1.31.tar.gz",
    "platform": null,
    "description": "# mlda: A Python package for Machine Learning-based Data Assimilation\n\n`mlda` is a Python package for Machine Learning-base Data Assimilation (DA).\nIt aims to provide a universal framework and the corresponding utilities for conducting reproducible data assimilation experiments using novel machine learning-based DA methods.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": "mlda: A Python package for Machine Learning-base Data Assimilation",
    "version": "2025.1.31",
    "project_urls": {
        "Homepage": "https://github.com/fzhu2e/mlda"
    },
    "split_keywords": [
        "machine learning",
        " data assimilation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0b4cc60b6189570b3179dbb1b050f3b7b291f723055d77cff2fe03271ef53b18",
                "md5": "fd3e1f91140111467db5cc8842233c16",
                "sha256": "6cdf091cc77ffb16bf572d46209893377b548e005002c7f09c3cd0d71ad36aad"
            },
            "downloads": -1,
            "filename": "mlda-2025.1.31.tar.gz",
            "has_sig": false,
            "md5_digest": "fd3e1f91140111467db5cc8842233c16",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12300,
            "upload_time": "2025-01-31T19:41:34",
            "upload_time_iso_8601": "2025-01-31T19:41:34.055157Z",
            "url": "https://files.pythonhosted.org/packages/0b/4c/c60b6189570b3179dbb1b050f3b7b291f723055d77cff2fe03271ef53b18/mlda-2025.1.31.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-31 19:41:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fzhu2e",
    "github_project": "mlda",
    "github_not_found": true,
    "lcname": "mlda"
}
        
Elapsed time: 1.61659s