mlda


Namemlda JSON
Version 2024.11.22 PyPI version JSON
download
home_pagehttps://github.com/fzhu2e/mlda
Summarymlda: A Python package for Machine Learning-base Data Assimilation
upload_time2024-11-22 20:30:20
maintainerNone
docs_urlNone
authorFeng Zhu, Weimin Si
requires_pythonNone
licenseBSD-3
keywords machine learning data assimilation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mlda: A Python package for Machine Learning-based Data Assimilation

`mlda` is a Python package for Machine Learning-base Data Assimilation (DA).
It aims to provide a universal framework and the corresponding utilities for conducting reproducible data assimilation experiments using novel machine learning-based DA methods.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fzhu2e/mlda",
    "name": "mlda",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Machine Learning, Data Assimilation",
    "author": "Feng Zhu, Weimin Si",
    "author_email": "fengzhu@ucar.edu, weimin_si@brown.edu",
    "download_url": "https://files.pythonhosted.org/packages/1d/4c/6432e7bd09d3ae524b6ff9686dd9ce9a662a3828b9e48642c632451934e4/mlda-2024.11.22.tar.gz",
    "platform": null,
    "description": "# mlda: A Python package for Machine Learning-based Data Assimilation\n\n`mlda` is a Python package for Machine Learning-base Data Assimilation (DA).\nIt aims to provide a universal framework and the corresponding utilities for conducting reproducible data assimilation experiments using novel machine learning-based DA methods.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": "mlda: A Python package for Machine Learning-base Data Assimilation",
    "version": "2024.11.22",
    "project_urls": {
        "Homepage": "https://github.com/fzhu2e/mlda"
    },
    "split_keywords": [
        "machine learning",
        " data assimilation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1d4c6432e7bd09d3ae524b6ff9686dd9ce9a662a3828b9e48642c632451934e4",
                "md5": "aceb0bee3ebccbe761a7485677718862",
                "sha256": "32693b810ef36fd16eed05b0843fe125fd2a94b8bca81da86ea7a9cdaa4405f4"
            },
            "downloads": -1,
            "filename": "mlda-2024.11.22.tar.gz",
            "has_sig": false,
            "md5_digest": "aceb0bee3ebccbe761a7485677718862",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 11589,
            "upload_time": "2024-11-22T20:30:20",
            "upload_time_iso_8601": "2024-11-22T20:30:20.872890Z",
            "url": "https://files.pythonhosted.org/packages/1d/4c/6432e7bd09d3ae524b6ff9686dd9ce9a662a3828b9e48642c632451934e4/mlda-2024.11.22.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-22 20:30:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fzhu2e",
    "github_project": "mlda",
    "github_not_found": true,
    "lcname": "mlda"
}
        
Elapsed time: 0.56484s