mle-agent


Namemle-agent JSON
Version 0.4.2 PyPI version JSON
download
home_pagehttps://github.com/MLSysOps/MLE-agent
SummaryMLE-agent: An agent to automate your MLE processes
upload_time2024-10-12 16:46:15
maintainerNone
docs_urlNone
authorYizheng Huang, Huaizheng Zhang
requires_pythonNone
licenseNone
keywords llm deep learning mlops shell neural networks
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h1 align="center">MLE-Agent: Your intelligent companion for seamless AI engineering and research.</h1>
<img alt="kaia-llama" height="200px" src="assets/kaia_llama.webp">
<a href="https://trendshift.io/repositories/11658" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11658" alt="MLSysOps%2FMLE-agent | Trendshift" style="width: 250px; height: 200px;" width="250" height="200px"/></a>
<p align="center">:love_letter: Fathers' love for Kaia :love_letter:</p>

![](https://github.com/MLSysOps/MLE-agent/actions/workflows/lint.yml/badge.svg) 
![](https://github.com/MLSysOps/MLE-agent/actions/workflows/test.yml/badge.svg) 
![PyPI - Version](https://img.shields.io/pypi/v/mle-agent)
[![Downloads](https://static.pepy.tech/badge/mle-agent)](https://pepy.tech/project/mle-agent)
![GitHub License](https://img.shields.io/github/license/MLSysOps/MLE-agent)
<a href="https://discord.gg/SgxBpENGRG"><img src="https://img.shields.io/badge/Discord-Join%20Us-purple?logo=discord&logoColor=white&style=flat" alt="Join our Discord community"></a>

[📚 Docs](https://mle-agent-site.vercel.app/) | 
[🐞 Report Issues](https://github.com/MLSysOps/MLE-agent/issues/new) | 
👋 Join us on <a href="https://discord.gg/SgxBpENGRG" target="_blank">Discord</a>

</div>


## Overview

MLE-Agent is designed as a pairing LLM agent for machine learning engineers and researchers. It is featured by:

- 🤖 Autonomous Baseline Creation: Automatically builds ML/AI baselines.
- 🔍 [Arxiv](https://arxiv.org/) and [Papers with Code](https://paperswithcode.com/) Integration: Access best practices and state-of-the-art methods.
- 🐛 Smart Debugging: Ensures high-quality code through automatic debugger-coder interactions.
- 📂 File System Integration: Organizes your project structure efficiently.
- 🧰 Comprehensive Tools Integration: Includes AI/ML functions and MLOps tools for a seamless workflow.
- ☕ Interactive CLI Chat: Enhances your projects with an easy-to-use chat interface.
- 📊 Weekly Report: Automatically generates detailed summaries of your weekly works.


https://github.com/user-attachments/assets/dac7be90-c662-4d0d-8d3a-2bc4df9cffb9

## Milestones

- :rocket: 09/10/2024: Release the `0.4.0` with new CLIs like `MLE report`, `MLE kaggle`, `MLE integration` and many new models like `Mistral`.
- :rocket: 07/25/2024: Release the `0.3.0` with huge refactoring, many integrations, etc (v0.3.0)
- :rocket: 07/11/2024: Release the `0.2.0` with multiple agents interaction (v0.2.0)
- 👨‍🍼 **07/03/2024: Kaia is born**
- :rocket: 06/01/2024: Release the first rule-based version of MLE agent (v0.1.0)

## Get started

### Installation

```bash
pip install mle-agent -U
# or from source
git clone git@github.com:MLSysOps/MLE-agent.git
pip install -e .
```

### Usage

```bash
mle new <project name>
```

And a project directory will be created under the current path, you need to start the project under the project directory.

```bash
cd <project name>
mle start
```

You can also start an interactive chat in the terminal under the project directory:

```bash
mle chat
```

## Use cases

### :bar_chart: Generate Work Report

MLE agent can help you summarize your weekly report, including development progress, communication notes, and to-do lists.

```bash
cd <project name>
mle report
```
Then, you can visit http://localhost:3000/ to generate your report locally.

### :trophy: Start with Kaggle Competition

MLE agent can participate in Kaggle competitions and finish coding and debugging from data preparation to model training independently.
For more details, see the [MLE-Agent Tutorials](https://mle-agent-site.vercel.app/tutorial/Start_a_kaggle_task).

```bash
cd <project name>
mle kaggle
```

## Roadmap

The following is a list of the tasks we plan to do, welcome to propose something new!

<details>
  <summary><b> :hammer: General Features</b></summary>
  
  - [x] Understand users' requirements to create an end-to-end AI project
  - [x] Suggest the SOTA data science solutions by using the web search
  - [x] Plan the ML engineering tasks with human interaction
  - [x] Execute the code on the local machine/cloud, debug and fix the errors
  - [x] Leverage the built-in functions to complete ML engineering tasks
  - [x] Interactive chat: A human-in-the-loop mode to help improve the existing ML projects
  - [x] Kaggle mode: to finish a Kaggle task without humans
  - [ ] Summary and reflect the whole ML/AI pipeline
  - [ ] Integration with Cloud data and testing and debugging platforms
  - [x] Local RAG support to make personal ML/AI coding assistant
  - [ ] Function zoo: generate AI/ML functions and save them for future usage


</details>

<details>
  <summary><b>:star: More LLMs and Serving Tools</b></summary>
  
  - [x] Ollama LLama3
  - [x] OpenAI GPTs
  - [x] Anthropic Claude 3.5 Sonnet
</details>

<details>
  <summary><b>:sparkling_heart: Better user experience</b></summary>

  - [x] CLI Application
  - [x] Web UI
  - [x] Discord
</details>

<details>
  <summary><b>:jigsaw: Functions and Integrations</b></summary>
  
  - [x] Local file system
  - [x] Local code exectutor
  - [x] Arxiv.org search
  - [x] Papers with Code search
  - [x] General keyword search
  - [ ] Hugging Face
  - [ ] SkyPilot cloud deployment
  - [ ] Snowflake data
  - [ ] AWS S3 data
  - [ ] Databricks data catalog
  - [ ] Wandb experiment monitoring
  - [ ] MLflow management
  - [ ] DBT data transform
</details>

</details>

## Contributing

We welcome contributions from the community. We are looking for contributors to help us with the following tasks:

- Benchmark and Evaluate the agent
- Add more features to the agent
- Improve the documentation
- Write tests

Please check the [CONTRIBUTING.md](CONTRIBUTING.md) file if you want to contribute.

## Support and Community

- [Discord community](https://discord.gg/SgxBpENGRG). If you have any questions, please ask in the Discord community.

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=MLSysOps/MLE-agent&type=Date)](https://star-history.com/#MLSysOps/MLE-agent&Date)

## License

Check [MIT License](LICENSE) file for more information.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MLSysOps/MLE-agent",
    "name": "mle-agent",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "LLM, deep learning, MLOps, shell, neural networks",
    "author": "Yizheng Huang, Huaizheng Zhang",
    "author_email": "huangyz0918@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/13/cf/59fa53308cced9caaac6c9128fe4eeb9baff338d949334172d265d8328ba/mle_agent-0.4.2.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h1 align=\"center\">MLE-Agent: Your intelligent companion for seamless AI engineering and research.</h1>\n<img alt=\"kaia-llama\" height=\"200px\" src=\"assets/kaia_llama.webp\">\n<a href=\"https://trendshift.io/repositories/11658\" target=\"_blank\"><img src=\"https://trendshift.io/api/badge/repositories/11658\" alt=\"MLSysOps%2FMLE-agent | Trendshift\" style=\"width: 250px; height: 200px;\" width=\"250\" height=\"200px\"/></a>\n<p align=\"center\">:love_letter: Fathers' love for Kaia :love_letter:</p>\n\n![](https://github.com/MLSysOps/MLE-agent/actions/workflows/lint.yml/badge.svg) \n![](https://github.com/MLSysOps/MLE-agent/actions/workflows/test.yml/badge.svg) \n![PyPI - Version](https://img.shields.io/pypi/v/mle-agent)\n[![Downloads](https://static.pepy.tech/badge/mle-agent)](https://pepy.tech/project/mle-agent)\n![GitHub License](https://img.shields.io/github/license/MLSysOps/MLE-agent)\n<a href=\"https://discord.gg/SgxBpENGRG\"><img src=\"https://img.shields.io/badge/Discord-Join%20Us-purple?logo=discord&logoColor=white&style=flat\" alt=\"Join our Discord community\"></a>\n\n[\ud83d\udcda Docs](https://mle-agent-site.vercel.app/) | \n[\ud83d\udc1e Report Issues](https://github.com/MLSysOps/MLE-agent/issues/new) | \n\ud83d\udc4b Join us on <a href=\"https://discord.gg/SgxBpENGRG\" target=\"_blank\">Discord</a>\n\n</div>\n\n\n## Overview\n\nMLE-Agent is designed as a pairing LLM agent for machine learning engineers and researchers. It is featured by:\n\n- \ud83e\udd16 Autonomous Baseline Creation: Automatically builds ML/AI baselines.\n- \ud83d\udd0d [Arxiv](https://arxiv.org/) and [Papers with Code](https://paperswithcode.com/) Integration: Access best practices and state-of-the-art methods.\n- \ud83d\udc1b Smart Debugging: Ensures high-quality code through automatic debugger-coder interactions.\n- \ud83d\udcc2 File System Integration: Organizes your project structure efficiently.\n- \ud83e\uddf0 Comprehensive Tools Integration: Includes AI/ML functions and MLOps tools for a seamless workflow.\n- \u2615 Interactive CLI Chat: Enhances your projects with an easy-to-use chat interface.\n- \ud83d\udcca Weekly Report: Automatically generates detailed summaries of your weekly works.\n\n\nhttps://github.com/user-attachments/assets/dac7be90-c662-4d0d-8d3a-2bc4df9cffb9\n\n## Milestones\n\n- :rocket: 09/10/2024: Release the `0.4.0` with new CLIs like `MLE report`, `MLE kaggle`, `MLE integration` and many new models like `Mistral`.\n- :rocket: 07/25/2024: Release the `0.3.0` with huge refactoring, many integrations, etc (v0.3.0)\n- :rocket: 07/11/2024: Release the `0.2.0` with multiple agents interaction (v0.2.0)\n- \ud83d\udc68\u200d\ud83c\udf7c **07/03/2024: Kaia is born**\n- :rocket: 06/01/2024: Release the first rule-based version of MLE agent (v0.1.0)\n\n## Get started\n\n### Installation\n\n```bash\npip install mle-agent -U\n# or from source\ngit clone git@github.com:MLSysOps/MLE-agent.git\npip install -e .\n```\n\n### Usage\n\n```bash\nmle new <project name>\n```\n\nAnd a project directory will be created under the current path, you need to start the project under the project directory.\n\n```bash\ncd <project name>\nmle start\n```\n\nYou can also start an interactive chat in the terminal under the project directory:\n\n```bash\nmle chat\n```\n\n## Use cases\n\n### :bar_chart: Generate Work Report\n\nMLE agent can help you summarize your weekly report, including development progress, communication notes, and to-do lists.\n\n```bash\ncd <project name>\nmle report\n```\nThen, you can visit http://localhost:3000/ to generate your report locally.\n\n### :trophy: Start with Kaggle Competition\n\nMLE agent can participate in Kaggle competitions and finish coding and debugging from data preparation to model training independently.\nFor more details, see the [MLE-Agent Tutorials](https://mle-agent-site.vercel.app/tutorial/Start_a_kaggle_task).\n\n```bash\ncd <project name>\nmle kaggle\n```\n\n## Roadmap\n\nThe following is a list of the tasks we plan to do, welcome to propose something new!\n\n<details>\n  <summary><b> :hammer: General Features</b></summary>\n  \n  - [x] Understand users' requirements to create an end-to-end AI project\n  - [x] Suggest the SOTA data science solutions by using the web search\n  - [x] Plan the ML engineering tasks with human interaction\n  - [x] Execute the code on the local machine/cloud, debug and fix the errors\n  - [x] Leverage the built-in functions to complete ML engineering tasks\n  - [x] Interactive chat: A human-in-the-loop mode to help improve the existing ML projects\n  - [x] Kaggle mode: to finish a Kaggle task without humans\n  - [ ] Summary and reflect the whole ML/AI pipeline\n  - [ ] Integration with Cloud data and testing and debugging platforms\n  - [x] Local RAG support to make personal ML/AI coding assistant\n  - [ ] Function zoo: generate AI/ML functions and save them for future usage\n\n\n</details>\n\n<details>\n  <summary><b>:star: More LLMs and Serving Tools</b></summary>\n  \n  - [x] Ollama LLama3\n  - [x] OpenAI GPTs\n  - [x] Anthropic Claude 3.5 Sonnet\n</details>\n\n<details>\n  <summary><b>:sparkling_heart: Better user experience</b></summary>\n\n  - [x] CLI Application\n  - [x] Web UI\n  - [x] Discord\n</details>\n\n<details>\n  <summary><b>:jigsaw: Functions and Integrations</b></summary>\n  \n  - [x] Local file system\n  - [x] Local code exectutor\n  - [x] Arxiv.org search\n  - [x] Papers with Code search\n  - [x] General keyword search\n  - [ ] Hugging Face\n  - [ ] SkyPilot cloud deployment\n  - [ ] Snowflake data\n  - [ ] AWS S3 data\n  - [ ] Databricks data catalog\n  - [ ] Wandb experiment monitoring\n  - [ ] MLflow management\n  - [ ] DBT data transform\n</details>\n\n</details>\n\n## Contributing\n\nWe welcome contributions from the community. We are looking for contributors to help us with the following tasks:\n\n- Benchmark and Evaluate the agent\n- Add more features to the agent\n- Improve the documentation\n- Write tests\n\nPlease check the [CONTRIBUTING.md](CONTRIBUTING.md) file if you want to contribute.\n\n## Support and Community\n\n- [Discord community](https://discord.gg/SgxBpENGRG). If you have any questions, please ask in the Discord community.\n\n## Star History\n\n[![Star History Chart](https://api.star-history.com/svg?repos=MLSysOps/MLE-agent&type=Date)](https://star-history.com/#MLSysOps/MLE-agent&Date)\n\n## License\n\nCheck [MIT License](LICENSE) file for more information.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "MLE-agent: An agent to automate your MLE processes",
    "version": "0.4.2",
    "project_urls": {
        "Download": "https://github.com/MLSysOps/MLE-agent/archive/refs/heads/main.zip",
        "Homepage": "https://github.com/MLSysOps/MLE-agent"
    },
    "split_keywords": [
        "llm",
        " deep learning",
        " mlops",
        " shell",
        " neural networks"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eb19116aa723d8133af8fadd3c302e2226f7f61d85f3386a0dd77eb00d11bf51",
                "md5": "3b0fbef16efaa8b99ad2e963610256c6",
                "sha256": "d3e962440ec789c7ca3acf45cb0d4ab866616445738a8decf4a4919155df2c19"
            },
            "downloads": -1,
            "filename": "mle_agent-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b0fbef16efaa8b99ad2e963610256c6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 65705,
            "upload_time": "2024-10-12T16:46:13",
            "upload_time_iso_8601": "2024-10-12T16:46:13.683348Z",
            "url": "https://files.pythonhosted.org/packages/eb/19/116aa723d8133af8fadd3c302e2226f7f61d85f3386a0dd77eb00d11bf51/mle_agent-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "13cf59fa53308cced9caaac6c9128fe4eeb9baff338d949334172d265d8328ba",
                "md5": "badf27b45341f19f299d6351d9f81075",
                "sha256": "440c60701826f428962cea563b2d1d1f4c05cca86818b0496c00b6ca5229faa8"
            },
            "downloads": -1,
            "filename": "mle_agent-0.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "badf27b45341f19f299d6351d9f81075",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 354452,
            "upload_time": "2024-10-12T16:46:15",
            "upload_time_iso_8601": "2024-10-12T16:46:15.244946Z",
            "url": "https://files.pythonhosted.org/packages/13/cf/59fa53308cced9caaac6c9128fe4eeb9baff338d949334172d265d8328ba/mle_agent-0.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-12 16:46:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MLSysOps",
    "github_project": "MLE-agent",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "mle-agent"
}
        
Elapsed time: 0.85726s