mlgidGUI


NamemlgidGUI JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
SummaryA GUI program for GIWAXS images analysis and annotation
upload_time2025-08-17 17:02:04
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12.0
licenseNone
keywords xray python giwaxs scientific-analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # _mlgidGUI_
## Project summary

_mlgidGUI_ is a graphical tool for the analysis and annotation of 2D scattering data e.g. Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS).
The resulting datasets can be used for training and testing ML models or further manual analysis. 
_mlgidGUI_ is well suited for the annotation of 2D diffraction images with radial symmetry.
In particular, it focuses on grazing-incidence wide-angle scattering data analysis and its specific needs.

## Installation

### Recommended: Precompiled AppImage or EXE
Readily compiled packages for the x64 architecture with Windows and Unix are available at the releases page:
[https://github.com/mlgid-project/mlgidGUI/releases](https://github.com/mlgid-project/mlgidGUI/releases)

To run the program on Windows simply double click on the file and ignore the security warnings.


Follow these instructions to run the AppImage: [https://docs.appimage.org/introduction/quickstart.html](https://docs.appimage.org/introduction/quickstart.html)

### Alternative: Installation with conda
* Install miniconda
[https://www.anaconda.com/download/success#miniconda](https://www.anaconda.com/download/success#miniconda)
* Create environment
`conda create -n mlgidGUI python=3.12 pip`
* Activate environment
`conda activate mlgidGUI`

Clone with git:

`git clone https://github.com/mlgid-project/mlgidGUI.git`

`cd ./mlgidGUI`

`pip install ./`

`python3 main.py`


### Alternative: Installation from PyPI

`pip install mlgidGUI`
* Apply a Patch to pyqtgraph

`pip install git+https://github.com/pyqtgraph/pyqtgraph.git@6eb0bf1a928c3e8fef332bbebe8a9da3be0ab19a`

## Usage

Import images or HDF5 files into the program, select an image in the Project Manager and begin labeling.
To add annotations, hold `Ctrl + Alt`, then click, hold, and drag the mouse over the image, similar to using a shape-drawing tool.
The key combination `Ctrl + H` can be used to hide the annotations. The annotated data  can be exported as PASCAL-VOC 
dataset or as an HDF5 file.

- We added a CIF file, a GIWAXS image, and an HDF5 file in the `docs\example_files` folder to provide the user with examples.
- For a short demonstration of the program usage, please refer to the [Workflow section](./docs/WORKFLOW.md).
- For a detailed guidance, please refer to the [Documentation section](./docs/DOCUMENTATION.md)


## Papers

This project is part of our broader efforts to improve and automate GIWAXS analysis. Below is a list of related papers.

### ML-based peak detection and structure refinement

_Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data_

V. Starostin, V. Munteanu, A. Greco, E. Kneschaurek, A. Pleli, F. Bertram, A. Gerlach, A. Hinderhofer, and F. Schreiber. npj Comput Mater 8, 101 (2022) [https://doi.org/10.1038/s41524-022-00778-8](https://doi.org/10.1038/s41524-022-00778-8)

### Deployment at synchrotron facilities for real-time analysis

_End-to-end deep learning pipeline for real-time processing of
surface scattering data at synchrotron facilities_

V. Starostin, L. Pithan, A. Greco, V. Munteanu, A. Gerlach, A. Hinderhofer, and F. Schreiber. Synchrotron Radiation News, 35:4, 21-27 (2022) [https://doi.org/10.1080/08940886.2022.2112499](https://doi.org/10.1080/08940886.2022.2112499)

### Benchmarking peak detection

_Benchmarking deep learning for automated peak detection on GIWAXS data_

C. Völter, V. Starostin, D. Lapkin, V. Munteanu, M. Romodin, M. Hylinski, A. Gerlach, A. Hinderhofer, F. Schreiber. Journal of Applied Crystallography (2025) accepted [https://doi.org/10.1107/S1600576725000974](https://doi.org/10.1107/S1600576725000974)


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mlgidGUI",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12.0",
    "maintainer_email": null,
    "keywords": "xray, python, giwaxs, scientific-analysis",
    "author": null,
    "author_email": "Constantin V\u00f6lter <constantin.voelter@gmail.com>, Vladimir Starostin <v.starostin.m@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "# _mlgidGUI_\n## Project summary\n\n_mlgidGUI_ is a graphical tool for the analysis and annotation of 2D scattering data e.g. Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS).\nThe resulting datasets can be used for training and testing ML models or further manual analysis. \n_mlgidGUI_ is well suited for the annotation of 2D diffraction images with radial symmetry.\nIn particular, it focuses on grazing-incidence wide-angle scattering data analysis and its specific needs.\n\n## Installation\n\n### Recommended: Precompiled AppImage or EXE\nReadily compiled packages for the x64 architecture with Windows and Unix are available at the releases page:\n[https://github.com/mlgid-project/mlgidGUI/releases](https://github.com/mlgid-project/mlgidGUI/releases)\n\nTo run the program on Windows simply double click on the file and ignore the security warnings.\n\n\nFollow these instructions to run the AppImage: [https://docs.appimage.org/introduction/quickstart.html](https://docs.appimage.org/introduction/quickstart.html)\n\n### Alternative: Installation with conda\n* Install miniconda\n[https://www.anaconda.com/download/success#miniconda](https://www.anaconda.com/download/success#miniconda)\n* Create environment\n`conda create -n mlgidGUI python=3.12 pip`\n* Activate environment\n`conda activate mlgidGUI`\n\nClone with git:\n\n`git clone https://github.com/mlgid-project/mlgidGUI.git`\n\n`cd ./mlgidGUI`\n\n`pip install ./`\n\n`python3 main.py`\n\n\n### Alternative: Installation from PyPI\n\n`pip install mlgidGUI`\n* Apply a Patch to pyqtgraph\n\n`pip install git+https://github.com/pyqtgraph/pyqtgraph.git@6eb0bf1a928c3e8fef332bbebe8a9da3be0ab19a`\n\n## Usage\n\nImport images or HDF5 files into the program, select an image in the Project Manager and begin labeling.\nTo add annotations, hold `Ctrl + Alt`, then click, hold, and drag the mouse over the image, similar to using a shape-drawing tool.\nThe key combination `Ctrl + H` can be used to hide the annotations. The annotated data  can be exported as PASCAL-VOC \ndataset or as an HDF5 file.\n\n- We added a CIF file, a GIWAXS image, and an HDF5 file in the `docs\\example_files` folder to provide the user with examples.\n- For a short demonstration of the program usage, please refer to the [Workflow section](./docs/WORKFLOW.md).\n- For a detailed guidance, please refer to the [Documentation section](./docs/DOCUMENTATION.md)\n\n\n## Papers\n\nThis project is part of our broader efforts to improve and automate GIWAXS analysis. Below is a list of related papers.\n\n### ML-based peak detection and structure refinement\n\n_Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data_\n\nV. Starostin, V. Munteanu, A. Greco, E. Kneschaurek, A. Pleli, F. Bertram, A. Gerlach, A. Hinderhofer, and F. Schreiber. npj Comput Mater 8, 101 (2022) [https://doi.org/10.1038/s41524-022-00778-8](https://doi.org/10.1038/s41524-022-00778-8)\n\n### Deployment at synchrotron facilities for real-time analysis\n\n_End-to-end deep learning pipeline for real-time processing of\nsurface scattering data at synchrotron facilities_\n\nV. Starostin, L. Pithan, A. Greco, V. Munteanu, A. Gerlach, A. Hinderhofer, and F. Schreiber. Synchrotron Radiation News, 35:4, 21-27 (2022) [https://doi.org/10.1080/08940886.2022.2112499](https://doi.org/10.1080/08940886.2022.2112499)\n\n### Benchmarking peak detection\n\n_Benchmarking deep learning for automated peak detection on GIWAXS data_\n\nC. V\u00f6lter, V. Starostin, D. Lapkin, V. Munteanu, M. Romodin, M. Hylinski, A. Gerlach, A. Hinderhofer, F. Schreiber. Journal of Applied Crystallography (2025) accepted [https://doi.org/10.1107/S1600576725000974](https://doi.org/10.1107/S1600576725000974)\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A GUI program for GIWAXS images analysis and annotation",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://github.com/mlgid-project/mlgidGUI"
    },
    "split_keywords": [
        "xray",
        " python",
        " giwaxs",
        " scientific-analysis"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "714c04f8210c895c32a781a0409856758dcb5c23dc5a1c94fe949dc7cc28a91a",
                "md5": "8de16f83ca590b91b85e4915c79fd186",
                "sha256": "014bfd4d3b2b72bb000e053e822d374f20694bbe8c8fa615434db2f238b61825"
            },
            "downloads": -1,
            "filename": "mlgidgui-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8de16f83ca590b91b85e4915c79fd186",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12.0",
            "size": 1741097,
            "upload_time": "2025-08-17T17:02:04",
            "upload_time_iso_8601": "2025-08-17T17:02:04.194406Z",
            "url": "https://files.pythonhosted.org/packages/71/4c/04f8210c895c32a781a0409856758dcb5c23dc5a1c94fe949dc7cc28a91a/mlgidgui-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-17 17:02:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mlgid-project",
    "github_project": "mlgidGUI",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mlgidgui"
}
        
Elapsed time: 1.04588s