mlos-viz


Namemlos-viz JSON
Version 0.6.1 PyPI version JSON
download
home_pageNone
SummaryVisualization Python interface for benchmark automation and optimization results.
upload_time2024-08-16 18:15:54
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords autotuning benchmarking optimization systems visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mlos_viz

The [`mlos_viz`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/./) module is an aid to visualizing experiment benchmarking and optimization results generated and stored by [`mlos_bench`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/).

Its core API is `mlos_viz.plot(experiment)`, initially implemented as a wrapper around [`dabl`](https://github.com/dabl/dabl) to provide a basic visual overview of the results, where `experiment` is an [`ExperimentData`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/base_experiment_data.py) objected returned from the [`mlos_bench.storage`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/) layer APIs.

In the future, we plan to add more automatic visualizations, interactive visualizations, feedback to the `mlos_bench` experiment trial scheduler, etc.

It's available for `pip install` via the pypi repository at [mlos-viz](https://pypi.org/project/mlos-viz/).

See Also: <https://microsoft.github.io/MLOS> for full API details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mlos-viz",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Microsoft <mlos-maintainers@service.microsoft.com>",
    "keywords": "autotuning, benchmarking, optimization, systems, visualization",
    "author": null,
    "author_email": "Microsoft <mlos-maintainers@service.microsoft.com>",
    "download_url": "https://files.pythonhosted.org/packages/2b/2f/2599c1bc3ed816a66056d7b6c0a3c0c003757efbdd4e08200f2c8250a0f2/mlos_viz-0.6.1.tar.gz",
    "platform": null,
    "description": "# mlos_viz\n\nThe [`mlos_viz`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/./) module is an aid to visualizing experiment benchmarking and optimization results generated and stored by [`mlos_bench`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/).\n\nIts core API is `mlos_viz.plot(experiment)`, initially implemented as a wrapper around [`dabl`](https://github.com/dabl/dabl) to provide a basic visual overview of the results, where `experiment` is an [`ExperimentData`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/base_experiment_data.py) objected returned from the [`mlos_bench.storage`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/) layer APIs.\n\nIn the future, we plan to add more automatic visualizations, interactive visualizations, feedback to the `mlos_bench` experiment trial scheduler, etc.\n\nIt's available for `pip install` via the pypi repository at [mlos-viz](https://pypi.org/project/mlos-viz/).\n\nSee Also: <https://microsoft.github.io/MLOS> for full API details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Visualization Python interface for benchmark automation and optimization results.",
    "version": "0.6.1",
    "project_urls": {
        "Documentation": "https://microsoft.github.io/MLOS/source_tree_docs/mlos_viz/",
        "Issues": "https://github.com/microsoft/MLOS/issues",
        "Package Source": "https://github.com/microsoft/MLOS/tree/main/mlos_viz/",
        "Repository": "https://github.com/microsoft/MLOS/"
    },
    "split_keywords": [
        "autotuning",
        " benchmarking",
        " optimization",
        " systems",
        " visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d637b5b9ae84cf7e14cc02dd82122f3da4318c40b61a355fed3ef63107278549",
                "md5": "d3e2ee69536d62d2989cc4956e1ff941",
                "sha256": "8738709a7195613cecd5344175704564b301d0d93f5e2babf946279143289893"
            },
            "downloads": -1,
            "filename": "mlos_viz-0.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d3e2ee69536d62d2989cc4956e1ff941",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 11377,
            "upload_time": "2024-08-16T18:15:50",
            "upload_time_iso_8601": "2024-08-16T18:15:50.823396Z",
            "url": "https://files.pythonhosted.org/packages/d6/37/b5b9ae84cf7e14cc02dd82122f3da4318c40b61a355fed3ef63107278549/mlos_viz-0.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2b2f2599c1bc3ed816a66056d7b6c0a3c0c003757efbdd4e08200f2c8250a0f2",
                "md5": "1d078d639c059979c2532fbfcc3fca30",
                "sha256": "84682c17ce9a505d8be04789fb78fb46e37eb5fabbb939b834d897a27b2e9bde"
            },
            "downloads": -1,
            "filename": "mlos_viz-0.6.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1d078d639c059979c2532fbfcc3fca30",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 11609,
            "upload_time": "2024-08-16T18:15:54",
            "upload_time_iso_8601": "2024-08-16T18:15:54.469251Z",
            "url": "https://files.pythonhosted.org/packages/2b/2f/2599c1bc3ed816a66056d7b6c0a3c0c003757efbdd4e08200f2c8250a0f2/mlos_viz-0.6.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-16 18:15:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "microsoft",
    "github_project": "MLOS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mlos-viz"
}
        
Elapsed time: 0.46856s