# mlos_viz
The [`mlos_viz`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/./) module is an aid to visualizing experiment benchmarking and optimization results generated and stored by [`mlos_bench`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/).
Its core API is `mlos_viz.plot(experiment)`, initially implemented as a wrapper around [`dabl`](https://github.com/dabl/dabl) to provide a basic visual overview of the results, where `experiment` is an [`ExperimentData`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/base_experiment_data.py) objected returned from the [`mlos_bench.storage`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/) layer APIs.
In the future, we plan to add more automatic visualizations, interactive visualizations, feedback to the `mlos_bench` experiment trial scheduler, etc.
It's available for `pip install` via the pypi repository at [mlos-viz](https://pypi.org/project/mlos-viz/).
See Also: <https://microsoft.github.io/MLOS> for full API details.
Raw data
{
"_id": null,
"home_page": null,
"name": "mlos-viz",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Microsoft <mlos-maintainers@service.microsoft.com>",
"keywords": "autotuning, benchmarking, optimization, systems, visualization",
"author": null,
"author_email": "Microsoft <mlos-maintainers@service.microsoft.com>",
"download_url": "https://files.pythonhosted.org/packages/2b/2f/2599c1bc3ed816a66056d7b6c0a3c0c003757efbdd4e08200f2c8250a0f2/mlos_viz-0.6.1.tar.gz",
"platform": null,
"description": "# mlos_viz\n\nThe [`mlos_viz`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/./) module is an aid to visualizing experiment benchmarking and optimization results generated and stored by [`mlos_bench`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/).\n\nIts core API is `mlos_viz.plot(experiment)`, initially implemented as a wrapper around [`dabl`](https://github.com/dabl/dabl) to provide a basic visual overview of the results, where `experiment` is an [`ExperimentData`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/base_experiment_data.py) objected returned from the [`mlos_bench.storage`](https://github.com/microsoft/MLOS/tree/main/mlos_viz/../mlos_bench/mlos_bench/storage/) layer APIs.\n\nIn the future, we plan to add more automatic visualizations, interactive visualizations, feedback to the `mlos_bench` experiment trial scheduler, etc.\n\nIt's available for `pip install` via the pypi repository at [mlos-viz](https://pypi.org/project/mlos-viz/).\n\nSee Also: <https://microsoft.github.io/MLOS> for full API details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Visualization Python interface for benchmark automation and optimization results.",
"version": "0.6.1",
"project_urls": {
"Documentation": "https://microsoft.github.io/MLOS/source_tree_docs/mlos_viz/",
"Issues": "https://github.com/microsoft/MLOS/issues",
"Package Source": "https://github.com/microsoft/MLOS/tree/main/mlos_viz/",
"Repository": "https://github.com/microsoft/MLOS/"
},
"split_keywords": [
"autotuning",
" benchmarking",
" optimization",
" systems",
" visualization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d637b5b9ae84cf7e14cc02dd82122f3da4318c40b61a355fed3ef63107278549",
"md5": "d3e2ee69536d62d2989cc4956e1ff941",
"sha256": "8738709a7195613cecd5344175704564b301d0d93f5e2babf946279143289893"
},
"downloads": -1,
"filename": "mlos_viz-0.6.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d3e2ee69536d62d2989cc4956e1ff941",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 11377,
"upload_time": "2024-08-16T18:15:50",
"upload_time_iso_8601": "2024-08-16T18:15:50.823396Z",
"url": "https://files.pythonhosted.org/packages/d6/37/b5b9ae84cf7e14cc02dd82122f3da4318c40b61a355fed3ef63107278549/mlos_viz-0.6.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2b2f2599c1bc3ed816a66056d7b6c0a3c0c003757efbdd4e08200f2c8250a0f2",
"md5": "1d078d639c059979c2532fbfcc3fca30",
"sha256": "84682c17ce9a505d8be04789fb78fb46e37eb5fabbb939b834d897a27b2e9bde"
},
"downloads": -1,
"filename": "mlos_viz-0.6.1.tar.gz",
"has_sig": false,
"md5_digest": "1d078d639c059979c2532fbfcc3fca30",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 11609,
"upload_time": "2024-08-16T18:15:54",
"upload_time_iso_8601": "2024-08-16T18:15:54.469251Z",
"url": "https://files.pythonhosted.org/packages/2b/2f/2599c1bc3ed816a66056d7b6c0a3c0c003757efbdd4e08200f2c8250a0f2/mlos_viz-0.6.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-16 18:15:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "microsoft",
"github_project": "MLOS",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mlos-viz"
}