mlprac


Namemlprac JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA collection of Machine Learning practice notebooks
upload_time2025-10-26 16:08:46
maintainerNone
docs_urlNone
authorYash
requires_python>=3.7
licenseMIT
keywords machine-learning jupyter notebooks education
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mlprac - Machine Learning Practice Notebooks

A comprehensive collection of Jupyter notebooks for practicing machine learning concepts with Python, NumPy, Pandas, and Scikit-learn.

## Installation

Install the package using pip:

```bash
pip install mlprac
```

## Usage

### Download Notebooks

After installation, you can download all practice notebooks to your current working directory:

```bash
mlprac download
```

Or specify a custom destination:

```bash
mlprac download --dest my-notebooks
```

### List Available Notebooks

To see all available notebooks without downloading:

```bash
mlprac download --list
```

### Package Information

Get information about the package:

```bash
mlprac info
```

## Notebook Contents

This package includes 30+ Jupyter notebooks covering:

- **NumPy Basics** (2.ipynb, 2a-2d.ipynb)
  - Array creation and manipulation
  - Indexing and slicing
  - Mathematical operations
  - Broadcasting

- **Linear Regression** (3.ipynb, 3a-3b.ipynb, 3multi.ipynb)
  - Simple linear regression
  - Multiple linear regression
  - Model evaluation

- **Classification Algorithms** (4.ipynb - 7.ipynb series)
  - Logistic regression
  - K-Nearest Neighbors (KNN)
  - Support Vector Machines (SVM)
  - Decision Trees

- **Clustering** (8.ipynb series)
  - K-Means clustering
  - Hierarchical clustering

- **Neural Networks** (9.ipynb series)
  - Basic neural network implementations
  - Deep learning concepts

- **Advanced Topics** (10.ipynb series)
  - Ensemble methods
  - Model optimization

## Requirements

The notebooks use the following Python libraries:
- NumPy
- Pandas
- Matplotlib
- Seaborn
- Scikit-learn

Install them separately:

```bash
pip install numpy pandas matplotlib seaborn scikit-learn jupyter
```

## Python API

You can also use the package programmatically in Python:

```python
import mlprac

# Get the path to notebooks
notebooks_path = mlprac.get_notebooks_path()

# List all available notebooks
notebooks = mlprac.list_notebooks()
for nb in notebooks:
    print(nb)
```

## License

MIT License

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mlprac",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "machine-learning, jupyter, notebooks, education",
    "author": "Yash",
    "author_email": "Yash <22102074.yash@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ce/7e/beec6c52eccf1f4ab411b5c3089d0a30154f7f0a990c566ff4bdb0836c6b/mlprac-0.1.0.tar.gz",
    "platform": null,
    "description": "# mlprac - Machine Learning Practice Notebooks\r\n\r\nA comprehensive collection of Jupyter notebooks for practicing machine learning concepts with Python, NumPy, Pandas, and Scikit-learn.\r\n\r\n## Installation\r\n\r\nInstall the package using pip:\r\n\r\n```bash\r\npip install mlprac\r\n```\r\n\r\n## Usage\r\n\r\n### Download Notebooks\r\n\r\nAfter installation, you can download all practice notebooks to your current working directory:\r\n\r\n```bash\r\nmlprac download\r\n```\r\n\r\nOr specify a custom destination:\r\n\r\n```bash\r\nmlprac download --dest my-notebooks\r\n```\r\n\r\n### List Available Notebooks\r\n\r\nTo see all available notebooks without downloading:\r\n\r\n```bash\r\nmlprac download --list\r\n```\r\n\r\n### Package Information\r\n\r\nGet information about the package:\r\n\r\n```bash\r\nmlprac info\r\n```\r\n\r\n## Notebook Contents\r\n\r\nThis package includes 30+ Jupyter notebooks covering:\r\n\r\n- **NumPy Basics** (2.ipynb, 2a-2d.ipynb)\r\n  - Array creation and manipulation\r\n  - Indexing and slicing\r\n  - Mathematical operations\r\n  - Broadcasting\r\n\r\n- **Linear Regression** (3.ipynb, 3a-3b.ipynb, 3multi.ipynb)\r\n  - Simple linear regression\r\n  - Multiple linear regression\r\n  - Model evaluation\r\n\r\n- **Classification Algorithms** (4.ipynb - 7.ipynb series)\r\n  - Logistic regression\r\n  - K-Nearest Neighbors (KNN)\r\n  - Support Vector Machines (SVM)\r\n  - Decision Trees\r\n\r\n- **Clustering** (8.ipynb series)\r\n  - K-Means clustering\r\n  - Hierarchical clustering\r\n\r\n- **Neural Networks** (9.ipynb series)\r\n  - Basic neural network implementations\r\n  - Deep learning concepts\r\n\r\n- **Advanced Topics** (10.ipynb series)\r\n  - Ensemble methods\r\n  - Model optimization\r\n\r\n## Requirements\r\n\r\nThe notebooks use the following Python libraries:\r\n- NumPy\r\n- Pandas\r\n- Matplotlib\r\n- Seaborn\r\n- Scikit-learn\r\n\r\nInstall them separately:\r\n\r\n```bash\r\npip install numpy pandas matplotlib seaborn scikit-learn jupyter\r\n```\r\n\r\n## Python API\r\n\r\nYou can also use the package programmatically in Python:\r\n\r\n```python\r\nimport mlprac\r\n\r\n# Get the path to notebooks\r\nnotebooks_path = mlprac.get_notebooks_path()\r\n\r\n# List all available notebooks\r\nnotebooks = mlprac.list_notebooks()\r\nfor nb in notebooks:\r\n    print(nb)\r\n```\r\n\r\n## License\r\n\r\nMIT License\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A collection of Machine Learning practice notebooks",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "machine-learning",
        " jupyter",
        " notebooks",
        " education"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9f86ccade8a6ab17827cd8fd032f1a740e4afe54611aa8c521b1e121112d9bdc",
                "md5": "e87fd5a67baa52299265515e5ffa4e73",
                "sha256": "f37e8db9bd2470e201946b2a55d8ecbe9c742f36cadca3ff790e7f4b5baf96be"
            },
            "downloads": -1,
            "filename": "mlprac-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e87fd5a67baa52299265515e5ffa4e73",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 3890123,
            "upload_time": "2025-10-26T16:08:44",
            "upload_time_iso_8601": "2025-10-26T16:08:44.482592Z",
            "url": "https://files.pythonhosted.org/packages/9f/86/ccade8a6ab17827cd8fd032f1a740e4afe54611aa8c521b1e121112d9bdc/mlprac-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ce7ebeec6c52eccf1f4ab411b5c3089d0a30154f7f0a990c566ff4bdb0836c6b",
                "md5": "ce534e74819ca4cb985030d3956d50d7",
                "sha256": "20ee3d5b31efe4c30172c09b399fef030c722c2b1efd7cb3c289d1e03756f921"
            },
            "downloads": -1,
            "filename": "mlprac-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ce534e74819ca4cb985030d3956d50d7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 3875245,
            "upload_time": "2025-10-26T16:08:46",
            "upload_time_iso_8601": "2025-10-26T16:08:46.831742Z",
            "url": "https://files.pythonhosted.org/packages/ce/7e/beec6c52eccf1f4ab411b5c3089d0a30154f7f0a990c566ff4bdb0836c6b/mlprac-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-26 16:08:46",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mlprac"
}
        
Elapsed time: 3.22994s