mlr-gd


Namemlr-gd JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://github.com/DrSolidDevil/mlr-gd/
SummaryA package for multiple linear regression by gradient descent.
upload_time2025-02-15 18:32:51
maintainerNone
docs_urlNone
authorDrSolidDevil
requires_python>=3.11
licenseBSD 3-Clause
keywords linear regression linear regression gradient descent machine learning artificial intelligence
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center"> <br>
  <img src="https://raw.githubusercontent.com/DrSolidDevil/mlr-gd/main/logo.png" width="300">
  <br><br>
</h1>

<div id="badges" align="center">
<a href="https://github.com/DrSolidDevil/mlr-gd//releases/latest"><img alt="GitHub Release" src="https://img.shields.io/github/v/release/drsoliddevil/mlr-gd?label=latest%20release"></a>
<a href="https://pypi.org/project/mlr-gd/"><img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/mlr-gd?label=PyPi%20downloads"></a>
<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/mlr-gd">
<img alt="GitHub repo size" src="https://img.shields.io/github/repo-size/DrSolidDevil/mlr-gd">
<a href="https://mlr-gd.readthedocs.io/"><img alt="Read the Docs" src="https://img.shields.io/readthedocs/mlr-gd"></a>
<a href="https://github.com/DrSolidDevil/mlr-gd/blob/main/LICENSE"><img alt="GitHub License" src="https://img.shields.io/github/license/drsoliddevil/mlr-gd"></a>
</div>

<br>
Multiple linear regression by gradient descent.
<br><br>
<h2>Installation</h2>

To install mlr-gd you can use [pip](https://pip.pypa.io):

```bash
$ python -m pip install mlr-gd
```

Alternatively, you can install it by cloning the [GitHub repository](https://github.com/DrSolidDevil/mlr-gd):
```bash
$ git clone https://github.com/DrSolidDevil/mlr-gd.git
$ cd mlr-gd
$ pip install .
```

<br>

To import the package into your script:  
```python
import melar
```

<br>
<br>
<h2>Example</h2>


```python
import numpy as np
import melar

# y = x1 + 0.5*x2
x = np.array([[1, 3, 5, 8], [1, 2, 3, 6]])
y = np.array([1.5, 4, 6.5, 11])

learning_rate = 0.01
generations = 100


model = melar.LinearRegression(weights_amount=2)
model.train(x, y, learning_rate, generations, do_print=True)
print(f"Weights: {model.weights}, Bias: {model.bias}")
```


```
Gen: 0, Cost: 95.4852602406095
Gen: 1, Cost: 5.593624864417041
Gen: 2, Cost: 0.3286224504551768
Gen: 3, Cost: 0.020244781001893267
...
Gen: 99, Cost: 0.0007438760098695897
Training Complete
Weights: [0.94643617 0.57630021], Bias: -0.003265101149422934
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DrSolidDevil/mlr-gd/",
    "name": "mlr-gd",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "linear regression, linear, regression, gradient descent, machine learning, artificial intelligence",
    "author": "DrSolidDevil",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/62/18/111a9df023ca8899ed18ae50f1719a2158d71625f7fb28f2f07b8b83ca42/mlr_gd-0.3.0.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\"> <br>\r\n  <img src=\"https://raw.githubusercontent.com/DrSolidDevil/mlr-gd/main/logo.png\" width=\"300\">\r\n  <br><br>\r\n</h1>\r\n\r\n<div id=\"badges\" align=\"center\">\r\n<a href=\"https://github.com/DrSolidDevil/mlr-gd//releases/latest\"><img alt=\"GitHub Release\" src=\"https://img.shields.io/github/v/release/drsoliddevil/mlr-gd?label=latest%20release\"></a>\r\n<a href=\"https://pypi.org/project/mlr-gd/\"><img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/mlr-gd?label=PyPi%20downloads\"></a>\r\n<img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/mlr-gd\">\r\n<img alt=\"GitHub repo size\" src=\"https://img.shields.io/github/repo-size/DrSolidDevil/mlr-gd\">\r\n<a href=\"https://mlr-gd.readthedocs.io/\"><img alt=\"Read the Docs\" src=\"https://img.shields.io/readthedocs/mlr-gd\"></a>\r\n<a href=\"https://github.com/DrSolidDevil/mlr-gd/blob/main/LICENSE\"><img alt=\"GitHub License\" src=\"https://img.shields.io/github/license/drsoliddevil/mlr-gd\"></a>\r\n</div>\r\n\r\n<br>\r\nMultiple linear regression by gradient descent.\r\n<br><br>\r\n<h2>Installation</h2>\r\n\r\nTo install mlr-gd you can use [pip](https://pip.pypa.io):\r\n\r\n```bash\r\n$ python -m pip install mlr-gd\r\n```\r\n\r\nAlternatively, you can install it by cloning the [GitHub repository](https://github.com/DrSolidDevil/mlr-gd):\r\n```bash\r\n$ git clone https://github.com/DrSolidDevil/mlr-gd.git\r\n$ cd mlr-gd\r\n$ pip install .\r\n```\r\n\r\n<br>\r\n\r\nTo import the package into your script:  \r\n```python\r\nimport melar\r\n```\r\n\r\n<br>\r\n<br>\r\n<h2>Example</h2>\r\n\r\n\r\n```python\r\nimport numpy as np\r\nimport melar\r\n\r\n# y = x1 + 0.5*x2\r\nx = np.array([[1, 3, 5, 8], [1, 2, 3, 6]])\r\ny = np.array([1.5, 4, 6.5, 11])\r\n\r\nlearning_rate = 0.01\r\ngenerations = 100\r\n\r\n\r\nmodel = melar.LinearRegression(weights_amount=2)\r\nmodel.train(x, y, learning_rate, generations, do_print=True)\r\nprint(f\"Weights: {model.weights}, Bias: {model.bias}\")\r\n```\r\n\r\n\r\n```\r\nGen: 0, Cost: 95.4852602406095\r\nGen: 1, Cost: 5.593624864417041\r\nGen: 2, Cost: 0.3286224504551768\r\nGen: 3, Cost: 0.020244781001893267\r\n...\r\nGen: 99, Cost: 0.0007438760098695897\r\nTraining Complete\r\nWeights: [0.94643617 0.57630021], Bias: -0.003265101149422934\r\n```\r\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause",
    "summary": "A package for multiple linear regression by gradient descent.",
    "version": "0.3.0",
    "project_urls": {
        "Homepage": "https://github.com/DrSolidDevil/mlr-gd/"
    },
    "split_keywords": [
        "linear regression",
        " linear",
        " regression",
        " gradient descent",
        " machine learning",
        " artificial intelligence"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9fc415b79fab642fb620c2c3f9c419c16b0313658514cf57b11cea89ffc91ace",
                "md5": "05a60282445db20d8f67695e6e414ce1",
                "sha256": "c9992fdc754dd5fae55876db09a2b5da5a47e823b32ef434c219bffd2c4dc76d"
            },
            "downloads": -1,
            "filename": "mlr_gd-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "05a60282445db20d8f67695e6e414ce1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 6846,
            "upload_time": "2025-02-15T18:32:50",
            "upload_time_iso_8601": "2025-02-15T18:32:50.660393Z",
            "url": "https://files.pythonhosted.org/packages/9f/c4/15b79fab642fb620c2c3f9c419c16b0313658514cf57b11cea89ffc91ace/mlr_gd-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6218111a9df023ca8899ed18ae50f1719a2158d71625f7fb28f2f07b8b83ca42",
                "md5": "4e89034e17a2c958009e842956d6f55f",
                "sha256": "a125b1b2a722d723418cbae4fc2be8d8c11dca26ef8cd6b560006cf435610a43"
            },
            "downloads": -1,
            "filename": "mlr_gd-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4e89034e17a2c958009e842956d6f55f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 10208,
            "upload_time": "2025-02-15T18:32:51",
            "upload_time_iso_8601": "2025-02-15T18:32:51.806026Z",
            "url": "https://files.pythonhosted.org/packages/62/18/111a9df023ca8899ed18ae50f1719a2158d71625f7fb28f2f07b8b83ca42/mlr_gd-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-15 18:32:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DrSolidDevil",
    "github_project": "mlr-gd",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mlr-gd"
}
        
Elapsed time: 0.52678s