mlrisko


Namemlrisko JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA toolkit to calibrate predictive algorithms to achieve risk control.
upload_time2025-08-30 19:42:14
maintainerThibault Cordier
docs_urlNone
authorThibault Cordier
requires_python>=3.13
licenseNone
keywords risk-control machine-learning ai statistics multiple-testing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Risk Control Project (mlrisko)

[![CI/CD Pipeline](https://github.com/thibaultcordier/risk-control/workflows/CI%2FCD%20Pipeline/badge.svg)](https://github.com/thibaultcordier/risk-control/actions)
[![Code Coverage](https://codecov.io/gh/thibaultcordier/risk-control/branch/main/graph/badge.svg)](https://codecov.io/gh/thibaultcordier/risk-control)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
[![License: BSD-3-Clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
[![PyPI version](https://badge.fury.io/py/mlrisko.svg)](https://badge.fury.io/py/mlrisko)
[![Documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?colorB=319795)](https://thibaultcordier.github.io/risk-control/)
[![Code style: ruff](https://img.shields.io/badge/code%20style-ruff-black.svg)](https://github.com/astral-sh/ruff)
[![Linting: ruff](https://img.shields.io/badge/linting-ruff-red.svg)](https://github.com/astral-sh/ruff)
[![Type checking: mypy](https://img.shields.io/badge/type%20checking-mypy-blue.svg)](https://mypy-lang.org/)

**mlrisko** (MLRiskControl) is a comprehensive toolkit for implementing risk control mechanisms for predictive algorithms based on the paper "Learn then test: Calibrating predictive algorithms to achieve risk control" by Angelopoulos et al. (2025).

The primary goal is to ensure that machine learning algorithms perform reliably and maintain a controlled level of risk through advanced calibration techniques.

## Installation

To install the necessary dependencies, run:

```bash
uv sync
uv pip install -e .
```

For development purposes, you can install the development dependencies with:
```bash
uv sync --all-groups
```

## Running the Example

To run the example, execute the following command:

```bash
uv run python examples/plot_regression.py
uv run python examples/plot_classification.py
uv run python examples/plot_classification_bis.py
```

## Documentation

For detailed documentation, refer to the [docs](https://thibaultcordier.github.io/risk-control/).

Or you can build the documentation with:
```bash
uv run mkdocs serve
```

## License

This project is licensed under the BSD 3-Clause License. See the [LICENSE](LICENSE) file for details.

## References

Angelopoulos, A. N., Bates, S., Candès, E. J., Jordan, M. I., & Lei, L. (2025). Learn then test: Calibrating predictive algorithms to achieve risk control. The Annals of Applied Statistics, 19(2), 1641-1662.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mlrisko",
    "maintainer": "Thibault Cordier",
    "docs_url": null,
    "requires_python": ">=3.13",
    "maintainer_email": "Thibault Cordier <thibault.cordier.pro@gmail.com>",
    "keywords": "risk-control, machine-learning, ai, statistics, multiple-testing",
    "author": "Thibault Cordier",
    "author_email": "Thibault Cordier <thibault.cordier.pro@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/b9/19/f944f7fc6ef477c82da368584c6356b1e94ff9969585907d483388252ec3/mlrisko-0.1.0.tar.gz",
    "platform": null,
    "description": "# Risk Control Project (mlrisko)\n\n[![CI/CD Pipeline](https://github.com/thibaultcordier/risk-control/workflows/CI%2FCD%20Pipeline/badge.svg)](https://github.com/thibaultcordier/risk-control/actions)\n[![Code Coverage](https://codecov.io/gh/thibaultcordier/risk-control/branch/main/graph/badge.svg)](https://codecov.io/gh/thibaultcordier/risk-control)\n[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)\n[![License: BSD-3-Clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)\n[![PyPI version](https://badge.fury.io/py/mlrisko.svg)](https://badge.fury.io/py/mlrisko)\n[![Documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?colorB=319795)](https://thibaultcordier.github.io/risk-control/)\n[![Code style: ruff](https://img.shields.io/badge/code%20style-ruff-black.svg)](https://github.com/astral-sh/ruff)\n[![Linting: ruff](https://img.shields.io/badge/linting-ruff-red.svg)](https://github.com/astral-sh/ruff)\n[![Type checking: mypy](https://img.shields.io/badge/type%20checking-mypy-blue.svg)](https://mypy-lang.org/)\n\n**mlrisko** (MLRiskControl) is a comprehensive toolkit for implementing risk control mechanisms for predictive algorithms based on the paper \"Learn then test: Calibrating predictive algorithms to achieve risk control\" by Angelopoulos et al. (2025).\n\nThe primary goal is to ensure that machine learning algorithms perform reliably and maintain a controlled level of risk through advanced calibration techniques.\n\n## Installation\n\nTo install the necessary dependencies, run:\n\n```bash\nuv sync\nuv pip install -e .\n```\n\nFor development purposes, you can install the development dependencies with:\n```bash\nuv sync --all-groups\n```\n\n## Running the Example\n\nTo run the example, execute the following command:\n\n```bash\nuv run python examples/plot_regression.py\nuv run python examples/plot_classification.py\nuv run python examples/plot_classification_bis.py\n```\n\n## Documentation\n\nFor detailed documentation, refer to the [docs](https://thibaultcordier.github.io/risk-control/).\n\nOr you can build the documentation with:\n```bash\nuv run mkdocs serve\n```\n\n## License\n\nThis project is licensed under the BSD 3-Clause License. See the [LICENSE](LICENSE) file for details.\n\n## References\n\nAngelopoulos, A. N., Bates, S., Cand\u00e8s, E. J., Jordan, M. I., & Lei, L. (2025). Learn then test: Calibrating predictive algorithms to achieve risk control. The Annals of Applied Statistics, 19(2), 1641-1662.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A toolkit to calibrate predictive algorithms to achieve risk control.",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/thibaultcordier/risk-control/issues",
        "CI/CD Pipeline": "https://github.com/thibaultcordier/risk-control/actions",
        "Changelog": "https://github.com/thibaultcordier/risk-control/releases",
        "Code Coverage": "https://codecov.io/gh/thibaultcordier/risk-control",
        "Documentation": "https://thibaultcordier.github.io/risk-control/",
        "Homepage": "https://github.com/thibaultcordier/risk-control",
        "PyPI": "https://pypi.org/project/mlrisko/",
        "Source Code": "https://github.com/thibaultcordier/risk-control"
    },
    "split_keywords": [
        "risk-control",
        " machine-learning",
        " ai",
        " statistics",
        " multiple-testing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9e101e7b11f0d5449635256c31ae8c1ad893e5196d5bd636a8fe2332fcff4eb5",
                "md5": "9d21797ba035191eea9a5a3cf098a05d",
                "sha256": "b469e3ba727e5e47964b1390f13e525abf4bb1cdd3f18e1017207754e6d84ba4"
            },
            "downloads": -1,
            "filename": "mlrisko-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9d21797ba035191eea9a5a3cf098a05d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.13",
            "size": 21933,
            "upload_time": "2025-08-30T19:42:12",
            "upload_time_iso_8601": "2025-08-30T19:42:12.757003Z",
            "url": "https://files.pythonhosted.org/packages/9e/10/1e7b11f0d5449635256c31ae8c1ad893e5196d5bd636a8fe2332fcff4eb5/mlrisko-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b919f944f7fc6ef477c82da368584c6356b1e94ff9969585907d483388252ec3",
                "md5": "8754a5d41c4f839be7adcd098b8471f0",
                "sha256": "58869d6041cf06113f3a8e31fa0bff44e90e251c15e346ebf1c6a28f4e9c9b2d"
            },
            "downloads": -1,
            "filename": "mlrisko-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8754a5d41c4f839be7adcd098b8471f0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.13",
            "size": 17252,
            "upload_time": "2025-08-30T19:42:14",
            "upload_time_iso_8601": "2025-08-30T19:42:14.142848Z",
            "url": "https://files.pythonhosted.org/packages/b9/19/f944f7fc6ef477c82da368584c6356b1e94ff9969585907d483388252ec3/mlrisko-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-30 19:42:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thibaultcordier",
    "github_project": "risk-control",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mlrisko"
}
        
Elapsed time: 1.22531s