# Risk Control Project (mlrisko)
[](https://github.com/thibaultcordier/risk-control/actions)
[](https://codecov.io/gh/thibaultcordier/risk-control)
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/BSD-3-Clause)
[](https://badge.fury.io/py/mlrisko)
[](https://thibaultcordier.github.io/risk-control/)
[](https://github.com/astral-sh/ruff)
[](https://github.com/astral-sh/ruff)
[](https://mypy-lang.org/)
**mlrisko** (MLRiskControl) is a comprehensive toolkit for implementing risk control mechanisms for predictive algorithms based on the paper "Learn then test: Calibrating predictive algorithms to achieve risk control" by Angelopoulos et al. (2025).
The primary goal is to ensure that machine learning algorithms perform reliably and maintain a controlled level of risk through advanced calibration techniques.
## Installation
To install the necessary dependencies, run:
```bash
uv sync
uv pip install -e .
```
For development purposes, you can install the development dependencies with:
```bash
uv sync --all-groups
```
## Running the Example
To run the example, execute the following command:
```bash
uv run python examples/plot_regression.py
uv run python examples/plot_classification.py
uv run python examples/plot_classification_bis.py
```
## Documentation
For detailed documentation, refer to the [docs](https://thibaultcordier.github.io/risk-control/).
Or you can build the documentation with:
```bash
uv run mkdocs serve
```
## License
This project is licensed under the BSD 3-Clause License. See the [LICENSE](LICENSE) file for details.
## References
Angelopoulos, A. N., Bates, S., Candès, E. J., Jordan, M. I., & Lei, L. (2025). Learn then test: Calibrating predictive algorithms to achieve risk control. The Annals of Applied Statistics, 19(2), 1641-1662.
Raw data
{
"_id": null,
"home_page": null,
"name": "mlrisko",
"maintainer": "Thibault Cordier",
"docs_url": null,
"requires_python": ">=3.13",
"maintainer_email": "Thibault Cordier <thibault.cordier.pro@gmail.com>",
"keywords": "risk-control, machine-learning, ai, statistics, multiple-testing",
"author": "Thibault Cordier",
"author_email": "Thibault Cordier <thibault.cordier.pro@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/b9/19/f944f7fc6ef477c82da368584c6356b1e94ff9969585907d483388252ec3/mlrisko-0.1.0.tar.gz",
"platform": null,
"description": "# Risk Control Project (mlrisko)\n\n[](https://github.com/thibaultcordier/risk-control/actions)\n[](https://codecov.io/gh/thibaultcordier/risk-control)\n[](https://www.python.org/downloads/)\n[](https://opensource.org/licenses/BSD-3-Clause)\n[](https://badge.fury.io/py/mlrisko)\n[](https://thibaultcordier.github.io/risk-control/)\n[](https://github.com/astral-sh/ruff)\n[](https://github.com/astral-sh/ruff)\n[](https://mypy-lang.org/)\n\n**mlrisko** (MLRiskControl) is a comprehensive toolkit for implementing risk control mechanisms for predictive algorithms based on the paper \"Learn then test: Calibrating predictive algorithms to achieve risk control\" by Angelopoulos et al. (2025).\n\nThe primary goal is to ensure that machine learning algorithms perform reliably and maintain a controlled level of risk through advanced calibration techniques.\n\n## Installation\n\nTo install the necessary dependencies, run:\n\n```bash\nuv sync\nuv pip install -e .\n```\n\nFor development purposes, you can install the development dependencies with:\n```bash\nuv sync --all-groups\n```\n\n## Running the Example\n\nTo run the example, execute the following command:\n\n```bash\nuv run python examples/plot_regression.py\nuv run python examples/plot_classification.py\nuv run python examples/plot_classification_bis.py\n```\n\n## Documentation\n\nFor detailed documentation, refer to the [docs](https://thibaultcordier.github.io/risk-control/).\n\nOr you can build the documentation with:\n```bash\nuv run mkdocs serve\n```\n\n## License\n\nThis project is licensed under the BSD 3-Clause License. See the [LICENSE](LICENSE) file for details.\n\n## References\n\nAngelopoulos, A. N., Bates, S., Cand\u00e8s, E. J., Jordan, M. I., & Lei, L. (2025). Learn then test: Calibrating predictive algorithms to achieve risk control. The Annals of Applied Statistics, 19(2), 1641-1662.\n",
"bugtrack_url": null,
"license": null,
"summary": "A toolkit to calibrate predictive algorithms to achieve risk control.",
"version": "0.1.0",
"project_urls": {
"Bug Tracker": "https://github.com/thibaultcordier/risk-control/issues",
"CI/CD Pipeline": "https://github.com/thibaultcordier/risk-control/actions",
"Changelog": "https://github.com/thibaultcordier/risk-control/releases",
"Code Coverage": "https://codecov.io/gh/thibaultcordier/risk-control",
"Documentation": "https://thibaultcordier.github.io/risk-control/",
"Homepage": "https://github.com/thibaultcordier/risk-control",
"PyPI": "https://pypi.org/project/mlrisko/",
"Source Code": "https://github.com/thibaultcordier/risk-control"
},
"split_keywords": [
"risk-control",
" machine-learning",
" ai",
" statistics",
" multiple-testing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9e101e7b11f0d5449635256c31ae8c1ad893e5196d5bd636a8fe2332fcff4eb5",
"md5": "9d21797ba035191eea9a5a3cf098a05d",
"sha256": "b469e3ba727e5e47964b1390f13e525abf4bb1cdd3f18e1017207754e6d84ba4"
},
"downloads": -1,
"filename": "mlrisko-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9d21797ba035191eea9a5a3cf098a05d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.13",
"size": 21933,
"upload_time": "2025-08-30T19:42:12",
"upload_time_iso_8601": "2025-08-30T19:42:12.757003Z",
"url": "https://files.pythonhosted.org/packages/9e/10/1e7b11f0d5449635256c31ae8c1ad893e5196d5bd636a8fe2332fcff4eb5/mlrisko-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b919f944f7fc6ef477c82da368584c6356b1e94ff9969585907d483388252ec3",
"md5": "8754a5d41c4f839be7adcd098b8471f0",
"sha256": "58869d6041cf06113f3a8e31fa0bff44e90e251c15e346ebf1c6a28f4e9c9b2d"
},
"downloads": -1,
"filename": "mlrisko-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "8754a5d41c4f839be7adcd098b8471f0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.13",
"size": 17252,
"upload_time": "2025-08-30T19:42:14",
"upload_time_iso_8601": "2025-08-30T19:42:14.142848Z",
"url": "https://files.pythonhosted.org/packages/b9/19/f944f7fc6ef477c82da368584c6356b1e94ff9969585907d483388252ec3/mlrisko-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-30 19:42:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "thibaultcordier",
"github_project": "risk-control",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mlrisko"
}