mlx-whisper


Namemlx-whisper JSON
Version 0.4.1 PyPI version JSON
download
home_pagehttps://github.com/ml-explore/mlx-examples
SummaryOpenAI Whisper on Apple silicon with MLX and the Hugging Face Hub
upload_time2024-11-02 20:52:34
maintainerNone
docs_urlNone
authorMLX Contributors
requires_python>=3.8
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Whisper

Speech recognition with Whisper in MLX. Whisper is a set of open source speech
recognition models from OpenAI, ranging from 39 million to 1.5 billion
parameters.[^1]

### Setup

Install [`ffmpeg`](https://ffmpeg.org/):

```
# on macOS using Homebrew (https://brew.sh/)
brew install ffmpeg
```

Install the `mlx-whisper` package with:

```
pip install mlx-whisper
```

### Run

#### CLI

At its simplest:

```
mlx_whisper audio_file.mp3
```

This will make a text file `audio_file.txt` with the results.

Use `-f` to specify the output format and `--model` to specify the model. There
are many other supported command line options. To see them all, run
`mlx_whisper -h`.

#### API

Transcribe audio with:

```python
import mlx_whisper

text = mlx_whisper.transcribe(speech_file)["text"]
```

The default model is "mlx-community/whisper-tiny". Choose the model by
setting `path_or_hf_repo`. For example:

```python
result = mlx_whisper.transcribe(speech_file, path_or_hf_repo="models/large")
```

This will load the model contained in `models/large`. The `path_or_hf_repo` can
also point to an MLX-style Whisper model on the Hugging Face Hub. In this case,
the model will be automatically downloaded. A [collection of pre-converted
Whisper
models](https://huggingface.co/collections/mlx-community/whisper-663256f9964fbb1177db93dc)
are in the Hugging Face MLX Community.

The `transcribe` function also supports word-level timestamps. You can generate
these with:

```python
output = mlx_whisper.transcribe(speech_file, word_timestamps=True)
print(output["segments"][0]["words"])
```

To see more transcription options use:

```
>>> help(mlx_whisper.transcribe)
```

### Converting models

> [!TIP]
> Skip the conversion step by using pre-converted checkpoints from the Hugging
> Face Hub. There are a few available in the [MLX
> Community](https://huggingface.co/mlx-community) organization.

To convert a model, first clone the MLX Examples repo:

```
git clone https://github.com/ml-explore/mlx-examples.git
```

Then run `convert.py` from `mlx-examples/whisper`. For example, to convert the
`tiny` model use:

```
python convert.py --torch-name-or-path tiny --mlx-path mlx_models/tiny
```

Note you can also convert a local PyTorch checkpoint which is in the original
OpenAI format.

To generate a 4-bit quantized model, use `-q`. For a full list of options:

```
python convert.py --help
```

By default, the conversion script will make the directory `mlx_models`
and save the converted `weights.npz` and `config.json` there. 

Each time it is run, `convert.py` will overwrite any model in the provided
path. To save different models, make sure to set `--mlx-path` to a unique
directory for each converted model. For example:

```bash
model="tiny"
python convert.py --torch-name-or-path ${model} --mlx-path mlx_models/${model}_fp16
python convert.py --torch-name-or-path ${model} --dtype float32 --mlx-path mlx_models/${model}_fp32
python convert.py --torch-name-or-path ${model} -q --q_bits 4 --mlx-path mlx_models/${model}_quantized_4bits
```

[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2212.04356), [blog post](https://openai.com/research/whisper), and [code](https://github.com/openai/whisper) for more details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ml-explore/mlx-examples",
    "name": "mlx-whisper",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "MLX Contributors",
    "author_email": "mlx@group.apple.com",
    "download_url": "https://files.pythonhosted.org/packages/a3/d5/e8e8996d030d876bcdd68c13619358df2b65592f20320b8c7aca6822cf90/mlx_whisper-0.4.1.tar.gz",
    "platform": null,
    "description": "# Whisper\n\nSpeech recognition with Whisper in MLX. Whisper is a set of open source speech\nrecognition models from OpenAI, ranging from 39 million to 1.5 billion\nparameters.[^1]\n\n### Setup\n\nInstall [`ffmpeg`](https://ffmpeg.org/):\n\n```\n# on macOS using Homebrew (https://brew.sh/)\nbrew install ffmpeg\n```\n\nInstall the `mlx-whisper` package with:\n\n```\npip install mlx-whisper\n```\n\n### Run\n\n#### CLI\n\nAt its simplest:\n\n```\nmlx_whisper audio_file.mp3\n```\n\nThis will make a text file `audio_file.txt` with the results.\n\nUse `-f` to specify the output format and `--model` to specify the model. There\nare many other supported command line options. To see them all, run\n`mlx_whisper -h`.\n\n#### API\n\nTranscribe audio with:\n\n```python\nimport mlx_whisper\n\ntext = mlx_whisper.transcribe(speech_file)[\"text\"]\n```\n\nThe default model is \"mlx-community/whisper-tiny\". Choose the model by\nsetting `path_or_hf_repo`. For example:\n\n```python\nresult = mlx_whisper.transcribe(speech_file, path_or_hf_repo=\"models/large\")\n```\n\nThis will load the model contained in `models/large`. The `path_or_hf_repo` can\nalso point to an MLX-style Whisper model on the Hugging Face Hub. In this case,\nthe model will be automatically downloaded. A [collection of pre-converted\nWhisper\nmodels](https://huggingface.co/collections/mlx-community/whisper-663256f9964fbb1177db93dc)\nare in the Hugging Face MLX Community.\n\nThe `transcribe` function also supports word-level timestamps. You can generate\nthese with:\n\n```python\noutput = mlx_whisper.transcribe(speech_file, word_timestamps=True)\nprint(output[\"segments\"][0][\"words\"])\n```\n\nTo see more transcription options use:\n\n```\n>>> help(mlx_whisper.transcribe)\n```\n\n### Converting models\n\n> [!TIP]\n> Skip the conversion step by using pre-converted checkpoints from the Hugging\n> Face Hub. There are a few available in the [MLX\n> Community](https://huggingface.co/mlx-community) organization.\n\nTo convert a model, first clone the MLX Examples repo:\n\n```\ngit clone https://github.com/ml-explore/mlx-examples.git\n```\n\nThen run `convert.py` from `mlx-examples/whisper`. For example, to convert the\n`tiny` model use:\n\n```\npython convert.py --torch-name-or-path tiny --mlx-path mlx_models/tiny\n```\n\nNote you can also convert a local PyTorch checkpoint which is in the original\nOpenAI format.\n\nTo generate a 4-bit quantized model, use `-q`. For a full list of options:\n\n```\npython convert.py --help\n```\n\nBy default, the conversion script will make the directory `mlx_models`\nand save the converted `weights.npz` and `config.json` there. \n\nEach time it is run, `convert.py` will overwrite any model in the provided\npath. To save different models, make sure to set `--mlx-path` to a unique\ndirectory for each converted model. For example:\n\n```bash\nmodel=\"tiny\"\npython convert.py --torch-name-or-path ${model} --mlx-path mlx_models/${model}_fp16\npython convert.py --torch-name-or-path ${model} --dtype float32 --mlx-path mlx_models/${model}_fp32\npython convert.py --torch-name-or-path ${model} -q --q_bits 4 --mlx-path mlx_models/${model}_quantized_4bits\n```\n\n[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2212.04356), [blog post](https://openai.com/research/whisper), and [code](https://github.com/openai/whisper) for more details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "OpenAI Whisper on Apple silicon with MLX and the Hugging Face Hub",
    "version": "0.4.1",
    "project_urls": {
        "Homepage": "https://github.com/ml-explore/mlx-examples"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1a4c1ac790f0619b2b2071f0903215809df9649578a124eed1e753b3f106cece",
                "md5": "07915454c306443eb106f279d55f10c8",
                "sha256": "f63f7071795d104a1a6d4b4cfc54ec65937bb4497bc2819769fffd3726a4154c"
            },
            "downloads": -1,
            "filename": "mlx_whisper-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "07915454c306443eb106f279d55f10c8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 782360,
            "upload_time": "2024-11-02T20:52:32",
            "upload_time_iso_8601": "2024-11-02T20:52:32.783151Z",
            "url": "https://files.pythonhosted.org/packages/1a/4c/1ac790f0619b2b2071f0903215809df9649578a124eed1e753b3f106cece/mlx_whisper-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a3d5e8e8996d030d876bcdd68c13619358df2b65592f20320b8c7aca6822cf90",
                "md5": "4756991e2b96e95ec4ae8b18298047f9",
                "sha256": "1c9f342d9d4f6a4d1ffd1178051e1251f4a346067651f3707eea907fe36fe031"
            },
            "downloads": -1,
            "filename": "mlx_whisper-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4756991e2b96e95ec4ae8b18298047f9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 778156,
            "upload_time": "2024-11-02T20:52:34",
            "upload_time_iso_8601": "2024-11-02T20:52:34.813463Z",
            "url": "https://files.pythonhosted.org/packages/a3/d5/e8e8996d030d876bcdd68c13619358df2b65592f20320b8c7aca6822cf90/mlx_whisper-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-02 20:52:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ml-explore",
    "github_project": "mlx-examples",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "circle": true,
    "lcname": "mlx-whisper"
}
        
Elapsed time: 0.39240s