mmcq-numba


Namemmcq-numba JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/hirokic5/mmcq_numba.git
SummaryAnalyze dominant colors in image with MMCQ algorithm
upload_time2023-02-06 03:14:35
maintainer
docs_urlNone
authorhirokic5
requires_python
licenseApache-2.0 license
keywords mmcq dominant-color
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mmcq_numba
Faster MMCQ algorithm ( analyze dominant colors in image) with numba in python

![results](https://user-images.githubusercontent.com/19792127/216875249-2b2438a6-005f-4420-a517-5ad5e783dc68.png)

## Installation
``` pip install mmcq-numba ```

## Usage
```python
from mmcq_numba.quantize import mmcq

color_count = 8 # the number of dominant colors
quantize = 5 


path = <path to image>
rgb = cv2.cvtColor(cv2.imread(path),cv2.COLOR_BGR2RGB)
width,height,c = rgb.shape
rgb_resize = cv2.resize(rgb, (width//quantize, height//quantize))
width,height,c = rgb_resize.shape
colors = rgb_resize.reshape(width*height, c).astype(np.int64)
    
# input type must be 2d arrays((size, channels)), and dtype=np.int64
c_map = mmcq(colors, color_count)

```

## Reference
This project is based on [mmcq.py](https://github.com/kanghyojun/mmcq.py)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hirokic5/mmcq_numba.git",
    "name": "mmcq-numba",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "mmcq dominant-color",
    "author": "hirokic5",
    "author_email": "kanbac5@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/26/dc/0137ead51e4efbd69c7ee553e81b260a76036e0fca9076b1c0bde7c2a4f7/mmcq_numba-0.1.1.tar.gz",
    "platform": null,
    "description": "# mmcq_numba\nFaster MMCQ algorithm ( analyze dominant colors in image) with numba in python\n\n![results](https://user-images.githubusercontent.com/19792127/216875249-2b2438a6-005f-4420-a517-5ad5e783dc68.png)\n\n## Installation\n``` pip install mmcq-numba ```\n\n## Usage\n```python\nfrom mmcq_numba.quantize import mmcq\n\ncolor_count = 8 # the number of dominant colors\nquantize = 5 \n\n\npath = <path to image>\nrgb = cv2.cvtColor(cv2.imread(path),cv2.COLOR_BGR2RGB)\nwidth,height,c = rgb.shape\nrgb_resize = cv2.resize(rgb, (width//quantize, height//quantize))\nwidth,height,c = rgb_resize.shape\ncolors = rgb_resize.reshape(width*height, c).astype(np.int64)\n    \n# input type must be 2d arrays((size, channels)), and dtype=np.int64\nc_map = mmcq(colors, color_count)\n\n```\n\n## Reference\nThis project is based on [mmcq.py](https://github.com/kanghyojun/mmcq.py)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0 license",
    "summary": "Analyze dominant colors in image with MMCQ algorithm",
    "version": "0.1.1",
    "split_keywords": [
        "mmcq",
        "dominant-color"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5d106ee6cfcaa840a06f229af587d9a972b6a1e65ad86519ff81954d4be788e4",
                "md5": "c7da1a8f9803cc50fd9b1f027229d414",
                "sha256": "87a1b35cf9a0b5349f39d804f775bc21675c52e634195763779743b54cf28719"
            },
            "downloads": -1,
            "filename": "mmcq_numba-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c7da1a8f9803cc50fd9b1f027229d414",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 10722,
            "upload_time": "2023-02-06T03:14:33",
            "upload_time_iso_8601": "2023-02-06T03:14:33.863478Z",
            "url": "https://files.pythonhosted.org/packages/5d/10/6ee6cfcaa840a06f229af587d9a972b6a1e65ad86519ff81954d4be788e4/mmcq_numba-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "26dc0137ead51e4efbd69c7ee553e81b260a76036e0fca9076b1c0bde7c2a4f7",
                "md5": "67354e5b9db34bb6c8cb4c60862633e8",
                "sha256": "c9ec85374bb82e1b1caf394bf2ba17b7a80b4741fdd8d448f31c5077f60e5745"
            },
            "downloads": -1,
            "filename": "mmcq_numba-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "67354e5b9db34bb6c8cb4c60862633e8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 9832,
            "upload_time": "2023-02-06T03:14:35",
            "upload_time_iso_8601": "2023-02-06T03:14:35.571132Z",
            "url": "https://files.pythonhosted.org/packages/26/dc/0137ead51e4efbd69c7ee553e81b260a76036e0fca9076b1c0bde7c2a4f7/mmcq_numba-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-06 03:14:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hirokic5",
    "github_project": "mmcq_numba.git",
    "lcname": "mmcq-numba"
}
        
Elapsed time: 0.06623s