mmd-critic


Namemmd-critic JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/PhysBoom/mmd_critic
SummaryPython package for the MMD Critic method
upload_time2025-01-02 01:50:29
maintainerNone
docs_urlNone
authorMatthew Chak
requires_python>=3.6
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mmd-critic

[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/yourusername/mmd-critic/blob/main/LICENSE)

A Python package for implementing the Maximum Mean Discrepancy Critic (MMD-Critic) method. This method is commonly used to find prototypes and criticisms (outliers, roughly speaking) in datasets.

## Installation

You can install the package via pip:

```bash
pip install mmd-critic
```

## Usage

```python
from mmd_critic import MMDCritic
from mmd_critic.kernels import RBFKernel

critic = MMDCritic(X, RBFKernel(sigma=1), criticism_kernel=RBFKernel(2), labels=y)

protos, proto_labels = critic.select_prototypes(50)
criticisms, criticism_labels = critic.select_criticisms(10, protos)
```

Note that the labels and criticism_kernel are optional arguments which are None by default. If `criticism_kernel`
is none, then the prototype kernel will be used for criticisms. If labels are none, then returned labels will be None.

See more in the [examples](https://github.com/PhysBoom/mmd_critic/tree/main/examples)

## More Info

Read my [article](https://medium.com/@physboom/the-mmd-critic-method-explained-c6a77f2dbf18) for more info on the MMD critic method. I also encourage you to read the original [paper](https://papers.nips.cc/paper_files/paper/2016/hash/5680522b8e2bb01943234bce7bf84534-Abstract.html).

## Acknowledgements

The implementation here is based on Been Kim's [original implementation](https://github.com/BeenKim/MMD-critic/tree/master) and [paper](https://papers.nips.cc/paper_files/paper/2016/hash/5680522b8e2bb01943234bce7bf84534-Abstract.html)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PhysBoom/mmd_critic",
    "name": "mmd-critic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Matthew Chak",
    "author_email": "mchak@calpoly.edu",
    "download_url": "https://files.pythonhosted.org/packages/3e/35/934bbcb8930616e95c1f46f85a209659f6ec25c328c8eb20f90297a449db/mmd_critic-0.1.2.tar.gz",
    "platform": null,
    "description": "# mmd-critic\r\n\r\n[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/yourusername/mmd-critic/blob/main/LICENSE)\r\n\r\nA Python package for implementing the Maximum Mean Discrepancy Critic (MMD-Critic) method. This method is commonly used to find prototypes and criticisms (outliers, roughly speaking) in datasets.\r\n\r\n## Installation\r\n\r\nYou can install the package via pip:\r\n\r\n```bash\r\npip install mmd-critic\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nfrom mmd_critic import MMDCritic\r\nfrom mmd_critic.kernels import RBFKernel\r\n\r\ncritic = MMDCritic(X, RBFKernel(sigma=1), criticism_kernel=RBFKernel(2), labels=y)\r\n\r\nprotos, proto_labels = critic.select_prototypes(50)\r\ncriticisms, criticism_labels = critic.select_criticisms(10, protos)\r\n```\r\n\r\nNote that the labels and criticism_kernel are optional arguments which are None by default. If `criticism_kernel`\r\nis none, then the prototype kernel will be used for criticisms. If labels are none, then returned labels will be None.\r\n\r\nSee more in the [examples](https://github.com/PhysBoom/mmd_critic/tree/main/examples)\r\n\r\n## More Info\r\n\r\nRead my [article](https://medium.com/@physboom/the-mmd-critic-method-explained-c6a77f2dbf18) for more info on the MMD critic method. I also encourage you to read the original [paper](https://papers.nips.cc/paper_files/paper/2016/hash/5680522b8e2bb01943234bce7bf84534-Abstract.html).\r\n\r\n## Acknowledgements\r\n\r\nThe implementation here is based on Been Kim's [original implementation](https://github.com/BeenKim/MMD-critic/tree/master) and [paper](https://papers.nips.cc/paper_files/paper/2016/hash/5680522b8e2bb01943234bce7bf84534-Abstract.html)\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python package for the MMD Critic method",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/PhysBoom/mmd_critic"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f62d2eaebda72968b6f7504cfb9722b61bbf0724766baff3ed10528b9d4568bf",
                "md5": "8b55127c2ae8bf08c1e88457dc7a2d17",
                "sha256": "2d79c5df264a5a1f63eac000109df861acecbd08c8324b5946aa2d4bac696d46"
            },
            "downloads": -1,
            "filename": "mmd_critic-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8b55127c2ae8bf08c1e88457dc7a2d17",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 9610,
            "upload_time": "2025-01-02T01:50:27",
            "upload_time_iso_8601": "2025-01-02T01:50:27.535343Z",
            "url": "https://files.pythonhosted.org/packages/f6/2d/2eaebda72968b6f7504cfb9722b61bbf0724766baff3ed10528b9d4568bf/mmd_critic-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3e35934bbcb8930616e95c1f46f85a209659f6ec25c328c8eb20f90297a449db",
                "md5": "a82f0475457caf4d0ff158118fb4ce23",
                "sha256": "2165a4006191293f0c1cfac4caf211248b1f417245690107ca61c95a585fb369"
            },
            "downloads": -1,
            "filename": "mmd_critic-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a82f0475457caf4d0ff158118fb4ce23",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 7556,
            "upload_time": "2025-01-02T01:50:29",
            "upload_time_iso_8601": "2025-01-02T01:50:29.725435Z",
            "url": "https://files.pythonhosted.org/packages/3e/35/934bbcb8930616e95c1f46f85a209659f6ec25c328c8eb20f90297a449db/mmd_critic-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-02 01:50:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PhysBoom",
    "github_project": "mmd_critic",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "mmd-critic"
}
        
Elapsed time: 1.06082s