mmmgqa


Namemmmgqa JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/mmca-mgqa
Summarymmca-mgqa - Pytorch
upload_time2023-09-28 00:46:07
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Multi-Modal Casual Multi-Grouped Query Attention
Experiments around using Multi-Modal Casual Attention with Multi-Grouped Query Attention


# Appreciation
* Lucidrains
* Agorians


# Install
`pip install mmmgqa`

# Usage
```python
import torch 
from mmca_mgqa.attention import SimpleMMCA

# Define the dimensions
dim = 512
head = 8
seq_len = 10
batch_size = 32

#attn
attn = SimpleMMCA(dim=dim, heads=head)

#random tokens
v = torch.randn(batch_size, seq_len, dim)
t = torch.randn(batch_size, seq_len, dim)

#pass the tokens throught attn
tokens = attn(v, t)

print(tokens)
```

# Architecture

# Todo


# License
MIT

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/mmca-mgqa",
    "name": "mmmgqa",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/e2/8f/6a39928e215f056514b984d4a559a194e0504a9782205a67f0cd1b319d6a/mmmgqa-0.0.2.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Multi-Modal Casual Multi-Grouped Query Attention\nExperiments around using Multi-Modal Casual Attention with Multi-Grouped Query Attention\n\n\n# Appreciation\n* Lucidrains\n* Agorians\n\n\n# Install\n`pip install mmmgqa`\n\n# Usage\n```python\nimport torch \nfrom mmca_mgqa.attention import SimpleMMCA\n\n# Define the dimensions\ndim = 512\nhead = 8\nseq_len = 10\nbatch_size = 32\n\n#attn\nattn = SimpleMMCA(dim=dim, heads=head)\n\n#random tokens\nv = torch.randn(batch_size, seq_len, dim)\nt = torch.randn(batch_size, seq_len, dim)\n\n#pass the tokens throught attn\ntokens = attn(v, t)\n\nprint(tokens)\n```\n\n# Architecture\n\n# Todo\n\n\n# License\nMIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "mmca-mgqa - Pytorch",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/kyegomez/mmca-mgqa",
        "Repository": "https://github.com/kyegomez/mmca-mgqa"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f867d45f22fb76b40649a22ddd8c0ac322cb8f821a2f17fd0670a93947e67f5",
                "md5": "7f02092a199aec00f4baeacb0e76bf21",
                "sha256": "838f2005dfd24f9357024b63c2d405490929ca23c216398076cf54db4b882769"
            },
            "downloads": -1,
            "filename": "mmmgqa-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7f02092a199aec00f4baeacb0e76bf21",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 3019,
            "upload_time": "2023-09-28T00:46:06",
            "upload_time_iso_8601": "2023-09-28T00:46:06.376536Z",
            "url": "https://files.pythonhosted.org/packages/3f/86/7d45f22fb76b40649a22ddd8c0ac322cb8f821a2f17fd0670a93947e67f5/mmmgqa-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e28f6a39928e215f056514b984d4a559a194e0504a9782205a67f0cd1b319d6a",
                "md5": "620af15dd76899d136479189bb29f375",
                "sha256": "0ab9320fe3693b5590a560966c6460c96d36748e5e3bab8d3ca3fa69581ffcc0"
            },
            "downloads": -1,
            "filename": "mmmgqa-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "620af15dd76899d136479189bb29f375",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 2964,
            "upload_time": "2023-09-28T00:46:07",
            "upload_time_iso_8601": "2023-09-28T00:46:07.769829Z",
            "url": "https://files.pythonhosted.org/packages/e2/8f/6a39928e215f056514b984d4a559a194e0504a9782205a67f0cd1b319d6a/mmmgqa-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-28 00:46:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "mmca-mgqa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "mmmgqa"
}
        
Elapsed time: 0.18468s