mmrotate


Namemmrotate JSON
Version 0.3.4 PyPI version JSON
download
home_pagehttps://github.com/open-mmlab/mmrotate
SummaryRotation Detection Toolbox and Benchmark
upload_time2023-02-01 12:01:40
maintainer
docs_urlNone
authorMMRotate Authors
requires_python
licenseApache License 2.0
keywords computer vision object detection rotation detection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <img src="resources/mmrotate-logo.png" width="450"/>
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![PyPI](https://img.shields.io/pypi/v/mmrotate)](https://pypi.org/project/mmrotate)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmrotate.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmrotate/workflows/build/badge.svg)](https://github.com/open-mmlab/mmrotate/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmrotate/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmrotate)
[![license](https://img.shields.io/github/license/open-mmlab/mmrotate.svg)](https://github.com/open-mmlab/mmrotate/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmrotate.svg)](https://github.com/open-mmlab/mmrotate/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmrotate.svg)](https://github.com/open-mmlab/mmrotate/issues)

[📘Documentation](https://mmrotate.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmrotate.readthedocs.io/en/latest/install.html) |
[👀Model Zoo](https://mmrotate.readthedocs.io/en/latest/model_zoo.html) |
[🆕Update News](https://mmrotate.readthedocs.io/en/latest/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmrotate/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmrotate/issues/new/choose)

</div>

<!--中/英 文档切换-->

<div align="center">

English | [简体中文](README_zh-CN.md)

</div>

## Introduction

MMRotate is an open-source toolbox for rotated object detection based on PyTorch.
It is a part of the [OpenMMLab project](https://github.com/open-mmlab).

The master branch works with **PyTorch 1.6+**.

https://user-images.githubusercontent.com/10410257/154433305-416d129b-60c8-44c7-9ebb-5ba106d3e9d5.MP4

<details open>
<summary><b>Major Features</b></summary>

- **Support multiple angle representations**

  MMRotate provides three mainstream angle representations to meet different paper settings.

- **Modular Design**

  We decompose the rotated object detection framework into different components,
  which makes it much easy and flexible to build a new model by combining different modules.

- **Strong baseline and State of the art**

  The toolbox provides strong baselines and state-of-the-art methods in rotated object detection.

</details>

## What's New

### Highlight

We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](https://github.com/open-mmlab/mmrotate/tree/1.x/configs/rotated_rtmdet).

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task                     | Dataset | AP                                   | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection         | COCO    | 52.8                                 | 322                    |
| Instance Segmentation    | COCO    | 44.6                                 | 188                    |
| Rotated Object Detection | DOTA    | 78.9(single-scale)/81.3(multi-scale) | 121                    |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

**0.3.4** was released in 01/02/2023:

- Fix compatibility with numpy, scikit-learn, and e2cnn.
- Support empty patch in Rotate Transform
- use iof for RRandomCrop validation

Please refer to [changelog.md](docs/en/changelog.md) for details and release history.

## Installation

MMRotate depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv) and [MMDetection](https://github.com/open-mmlab/mmdetection).
Below are quick steps for installation.
Please refer to [Install Guide](https://mmrotate.readthedocs.io/en/latest/install.html) for more detailed instruction.

```shell
conda create -n open-mmlab python=3.7 pytorch==1.7.0 cudatoolkit=10.1 torchvision -c pytorch -y
conda activate open-mmlab
pip install openmim
mim install mmcv-full
mim install mmdet
git clone https://github.com/open-mmlab/mmrotate.git
cd mmrotate
pip install -r requirements/build.txt
pip install -v -e .
```

## Get Started

Please see [get_started.md](docs/en/get_started.md) for the basic usage of MMRotate.
We provide [colab tutorial](demo/MMRotate_Tutorial.ipynb), and other tutorials for:

- [learn the basics](docs/en/intro.md)
- [learn the config](docs/en/tutorials/customize_config.md)
- [customize dataset](docs/en/tutorials/customize_dataset.md)
- [customize model](docs/en/tutorials/customize_models.md)
- [useful tools](docs/en/tutorials/useful_tools.md)

## Model Zoo

Results and models are available in the *README.md* of each method's config directory.
A summary can be found in the [Model Zoo](docs/en/model_zoo.md) page.

<details open>
<summary><b>Supported algorithms:</b></summary>

- [x] [Rotated RetinaNet-OBB/HBB](configs/rotated_retinanet/README.md) (ICCV'2017)
- [x] [Rotated FasterRCNN-OBB](configs/rotated_faster_rcnn/README.md) (TPAMI'2017)
- [x] [Rotated RepPoints-OBB](configs/rotated_reppoints/README.md) (ICCV'2019)
- [x] [Rotated FCOS](configs/rotated_fcos/README.md) (ICCV'2019)
- [x] [RoI Transformer](configs/roi_trans/README.md) (CVPR'2019)
- [x] [Gliding Vertex](configs/gliding_vertex/README.md) (TPAMI'2020)
- [x] [Rotated ATSS-OBB](configs/rotated_atss/README.md) (CVPR'2020)
- [x] [CSL](configs/csl/README.md) (ECCV'2020)
- [x] [R<sup>3</sup>Det](configs/r3det/README.md) (AAAI'2021)
- [x] [S<sup>2</sup>A-Net](configs/s2anet/README.md) (TGRS'2021)
- [x] [ReDet](configs/redet/README.md) (CVPR'2021)
- [x] [Beyond Bounding-Box](configs/cfa/README.md) (CVPR'2021)
- [x] [Oriented R-CNN](configs/oriented_rcnn/README.md) (ICCV'2021)
- [x] [GWD](configs/gwd/README.md) (ICML'2021)
- [x] [KLD](configs/kld/README.md) (NeurIPS'2021)
- [x] [SASM](configs/sasm_reppoints/README.md) (AAAI'2022)
- [x] [Oriented RepPoints](configs/oriented_reppoints/README.md) (CVPR'2022)
- [x] [KFIoU](configs/kfiou/README.md) (arXiv)
- [x] [G-Rep](configs/g_reppoints/README.md) (stay tuned)

</details>

## Data Preparation

Please refer to [data_preparation.md](tools/data/README.md) to prepare the data.

## FAQ

Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.

## Contributing

We appreciate all contributions to improve MMRotate. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.

## Acknowledgement

MMRotate is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new methods.

## Citation

If you use this toolbox or benchmark in your research, please cite this project.

```bibtex
@inproceedings{zhou2022mmrotate,
  title   = {MMRotate: A Rotated Object Detection Benchmark using PyTorch},
  author  = {Zhou, Yue and Yang, Xue and Zhang, Gefan and Wang, Jiabao and Liu, Yanyi and
             Hou, Liping and Jiang, Xue and Liu, Xingzhao and Yan, Junchi and Lyu, Chengqi and
             Zhang, Wenwei and Chen, Kai},
  booktitle={Proceedings of the 30th ACM International Conference on Multimedia},
  year={2022}
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Projects in OpenMMLab

- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/open-mmlab/mmrotate",
    "name": "mmrotate",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "computer vision,object detection,rotation detection",
    "author": "MMRotate Authors",
    "author_email": "openmmlab@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/cb/09/67ca001201cc5162341926245b9cb6d9dbdbd84b03acbc16221f7c630c41/mmrotate-0.3.4.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <img src=\"resources/mmrotate-logo.png\" width=\"450\"/>\n  <div>&nbsp;</div>\n  <div align=\"center\">\n    <b><font size=\"5\">OpenMMLab website</font></b>\n    <sup>\n      <a href=\"https://openmmlab.com\">\n        <i><font size=\"4\">HOT</font></i>\n      </a>\n    </sup>\n    &nbsp;&nbsp;&nbsp;&nbsp;\n    <b><font size=\"5\">OpenMMLab platform</font></b>\n    <sup>\n      <a href=\"https://platform.openmmlab.com\">\n        <i><font size=\"4\">TRY IT OUT</font></i>\n      </a>\n    </sup>\n  </div>\n  <div>&nbsp;</div>\n\n[![PyPI](https://img.shields.io/pypi/v/mmrotate)](https://pypi.org/project/mmrotate)\n[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmrotate.readthedocs.io/en/latest/)\n[![badge](https://github.com/open-mmlab/mmrotate/workflows/build/badge.svg)](https://github.com/open-mmlab/mmrotate/actions)\n[![codecov](https://codecov.io/gh/open-mmlab/mmrotate/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmrotate)\n[![license](https://img.shields.io/github/license/open-mmlab/mmrotate.svg)](https://github.com/open-mmlab/mmrotate/blob/main/LICENSE)\n[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmrotate.svg)](https://github.com/open-mmlab/mmrotate/issues)\n[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmrotate.svg)](https://github.com/open-mmlab/mmrotate/issues)\n\n[\ud83d\udcd8Documentation](https://mmrotate.readthedocs.io/en/latest/) |\n[\ud83d\udee0\ufe0fInstallation](https://mmrotate.readthedocs.io/en/latest/install.html) |\n[\ud83d\udc40Model Zoo](https://mmrotate.readthedocs.io/en/latest/model_zoo.html) |\n[\ud83c\udd95Update News](https://mmrotate.readthedocs.io/en/latest/changelog.html) |\n[\ud83d\ude80Ongoing Projects](https://github.com/open-mmlab/mmrotate/projects) |\n[\ud83e\udd14Reporting Issues](https://github.com/open-mmlab/mmrotate/issues/new/choose)\n\n</div>\n\n<!--\u4e2d/\u82f1 \u6587\u6863\u5207\u6362-->\n\n<div align=\"center\">\n\nEnglish | [\u7b80\u4f53\u4e2d\u6587](README_zh-CN.md)\n\n</div>\n\n## Introduction\n\nMMRotate is an open-source toolbox for rotated object detection based on PyTorch.\nIt is a part of the [OpenMMLab project](https://github.com/open-mmlab).\n\nThe master branch works with **PyTorch 1.6+**.\n\nhttps://user-images.githubusercontent.com/10410257/154433305-416d129b-60c8-44c7-9ebb-5ba106d3e9d5.MP4\n\n<details open>\n<summary><b>Major Features</b></summary>\n\n- **Support multiple angle representations**\n\n  MMRotate provides three mainstream angle representations to meet different paper settings.\n\n- **Modular Design**\n\n  We decompose the rotated object detection framework into different components,\n  which makes it much easy and flexible to build a new model by combining different modules.\n\n- **Strong baseline and State of the art**\n\n  The toolbox provides strong baselines and state-of-the-art methods in rotated object detection.\n\n</details>\n\n## What's New\n\n### Highlight\n\nWe are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](https://github.com/open-mmlab/mmrotate/tree/1.x/configs/rotated_rtmdet).\n\n[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)\n[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)\n[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)\n\n| Task                     | Dataset | AP                                   | FPS(TRT FP16 BS1 3090) |\n| ------------------------ | ------- | ------------------------------------ | ---------------------- |\n| Object Detection         | COCO    | 52.8                                 | 322                    |\n| Instance Segmentation    | COCO    | 44.6                                 | 188                    |\n| Rotated Object Detection | DOTA    | 78.9(single-scale)/81.3(multi-scale) | 121                    |\n\n<div align=center>\n<img src=\"https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png\"/>\n</div>\n\n**0.3.4** was released in 01/02/2023:\n\n- Fix compatibility with numpy, scikit-learn, and e2cnn.\n- Support empty patch in Rotate Transform\n- use iof for RRandomCrop validation\n\nPlease refer to [changelog.md](docs/en/changelog.md) for details and release history.\n\n## Installation\n\nMMRotate depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv) and [MMDetection](https://github.com/open-mmlab/mmdetection).\nBelow are quick steps for installation.\nPlease refer to [Install Guide](https://mmrotate.readthedocs.io/en/latest/install.html) for more detailed instruction.\n\n```shell\nconda create -n open-mmlab python=3.7 pytorch==1.7.0 cudatoolkit=10.1 torchvision -c pytorch -y\nconda activate open-mmlab\npip install openmim\nmim install mmcv-full\nmim install mmdet\ngit clone https://github.com/open-mmlab/mmrotate.git\ncd mmrotate\npip install -r requirements/build.txt\npip install -v -e .\n```\n\n## Get Started\n\nPlease see [get_started.md](docs/en/get_started.md) for the basic usage of MMRotate.\nWe provide [colab tutorial](demo/MMRotate_Tutorial.ipynb), and other tutorials for:\n\n- [learn the basics](docs/en/intro.md)\n- [learn the config](docs/en/tutorials/customize_config.md)\n- [customize dataset](docs/en/tutorials/customize_dataset.md)\n- [customize model](docs/en/tutorials/customize_models.md)\n- [useful tools](docs/en/tutorials/useful_tools.md)\n\n## Model Zoo\n\nResults and models are available in the *README.md* of each method's config directory.\nA summary can be found in the [Model Zoo](docs/en/model_zoo.md) page.\n\n<details open>\n<summary><b>Supported algorithms:</b></summary>\n\n- [x] [Rotated RetinaNet-OBB/HBB](configs/rotated_retinanet/README.md) (ICCV'2017)\n- [x] [Rotated FasterRCNN-OBB](configs/rotated_faster_rcnn/README.md) (TPAMI'2017)\n- [x] [Rotated RepPoints-OBB](configs/rotated_reppoints/README.md) (ICCV'2019)\n- [x] [Rotated FCOS](configs/rotated_fcos/README.md) (ICCV'2019)\n- [x] [RoI Transformer](configs/roi_trans/README.md) (CVPR'2019)\n- [x] [Gliding Vertex](configs/gliding_vertex/README.md) (TPAMI'2020)\n- [x] [Rotated ATSS-OBB](configs/rotated_atss/README.md) (CVPR'2020)\n- [x] [CSL](configs/csl/README.md) (ECCV'2020)\n- [x] [R<sup>3</sup>Det](configs/r3det/README.md) (AAAI'2021)\n- [x] [S<sup>2</sup>A-Net](configs/s2anet/README.md) (TGRS'2021)\n- [x] [ReDet](configs/redet/README.md) (CVPR'2021)\n- [x] [Beyond Bounding-Box](configs/cfa/README.md) (CVPR'2021)\n- [x] [Oriented R-CNN](configs/oriented_rcnn/README.md) (ICCV'2021)\n- [x] [GWD](configs/gwd/README.md) (ICML'2021)\n- [x] [KLD](configs/kld/README.md) (NeurIPS'2021)\n- [x] [SASM](configs/sasm_reppoints/README.md) (AAAI'2022)\n- [x] [Oriented RepPoints](configs/oriented_reppoints/README.md) (CVPR'2022)\n- [x] [KFIoU](configs/kfiou/README.md) (arXiv)\n- [x] [G-Rep](configs/g_reppoints/README.md) (stay tuned)\n\n</details>\n\n## Data Preparation\n\nPlease refer to [data_preparation.md](tools/data/README.md) to prepare the data.\n\n## FAQ\n\nPlease refer to [FAQ](docs/en/faq.md) for frequently asked questions.\n\n## Contributing\n\nWe appreciate all contributions to improve MMRotate. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.\n\n## Acknowledgement\n\nMMRotate is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new methods.\n\n## Citation\n\nIf you use this toolbox or benchmark in your research, please cite this project.\n\n```bibtex\n@inproceedings{zhou2022mmrotate,\n  title   = {MMRotate: A Rotated Object Detection Benchmark using PyTorch},\n  author  = {Zhou, Yue and Yang, Xue and Zhang, Gefan and Wang, Jiabao and Liu, Yanyi and\n             Hou, Liping and Jiang, Xue and Liu, Xingzhao and Yan, Junchi and Lyu, Chengqi and\n             Zhang, Wenwei and Chen, Kai},\n  booktitle={Proceedings of the 30th ACM International Conference on Multimedia},\n  year={2022}\n}\n```\n\n## License\n\nThis project is released under the [Apache 2.0 license](LICENSE).\n\n## Projects in OpenMMLab\n\n- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.\n- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.\n- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.\n- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.\n- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.\n- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.\n- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.\n- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.\n- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.\n- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.\n- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.\n- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.\n- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.\n- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.\n- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.\n- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.\n- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.\n- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.\n- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.\n\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Rotation Detection Toolbox and Benchmark",
    "version": "0.3.4",
    "split_keywords": [
        "computer vision",
        "object detection",
        "rotation detection"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d289862eb405a713a9792a49bdf2e50ff726d90428d31e2da289603b7db80ee2",
                "md5": "25f51e4af19b033fe71e2afee11fcd6c",
                "sha256": "812f5232b563b44132f2ebffa0255577b1e6598c1ae8f23fa34eea789fdbdd04"
            },
            "downloads": -1,
            "filename": "mmrotate-0.3.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "25f51e4af19b033fe71e2afee11fcd6c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 379759,
            "upload_time": "2023-02-01T12:01:38",
            "upload_time_iso_8601": "2023-02-01T12:01:38.644794Z",
            "url": "https://files.pythonhosted.org/packages/d2/89/862eb405a713a9792a49bdf2e50ff726d90428d31e2da289603b7db80ee2/mmrotate-0.3.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb0967ca001201cc5162341926245b9cb6d9dbdbd84b03acbc16221f7c630c41",
                "md5": "7955214dfda7eaf10df79fe68ce661f0",
                "sha256": "dfa990cd8ac9205eee5a9e6d837393f6730c2560e6d8cb0b9e3581c5cbb8ce7d"
            },
            "downloads": -1,
            "filename": "mmrotate-0.3.4.tar.gz",
            "has_sig": false,
            "md5_digest": "7955214dfda7eaf10df79fe68ce661f0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 208658,
            "upload_time": "2023-02-01T12:01:40",
            "upload_time_iso_8601": "2023-02-01T12:01:40.916439Z",
            "url": "https://files.pythonhosted.org/packages/cb/09/67ca001201cc5162341926245b9cb6d9dbdbd84b03acbc16221f7c630c41/mmrotate-0.3.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-01 12:01:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "open-mmlab",
    "github_project": "mmrotate",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "circle": true,
    "requirements": [],
    "lcname": "mmrotate"
}
        
Elapsed time: 0.60977s