mne-nirs


Namemne-nirs JSON
Version 0.7.3 PyPI version JSON
download
home_pageNone
SummaryAn MNE compatible package for processing near-infrared spectroscopy data
upload_time2025-10-16 18:38:36
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseBSD-3-Clause
keywords ecog eeg meg brain fnirs neuroimaging neuroscience
VCS
bugtrack_url
requirements numpy scipy matplotlib tqdm pooch decorator h5io packaging pymatreader PyQt6 PyQt6-Qt6 pyobjc-framework-Cocoa sip scikit-learn nibabel numba h5py jinja2 pandas numexpr jupyter python-picard statsmodels joblib psutil dipy vtk nilearn xlrd imageio imageio-ffmpeg traitlets pyvista pyvistaqt mffpy ipywidgets ipyvtklink mne h5io lxml patsy tables typing_extensions seaborn
Travis-CI No Travis.
coveralls test coverage
            MNE-NIRS: Near-Infrared Spectroscopy Analysis
=============================================

.. image:: https://img.shields.io/badge/docs-master-brightgreen
    :target: https://mne.tools/mne-nirs/
    
.. image:: https://github.com/mne-tools/mne-nirs/workflows/linux%20/%20pip/badge.svg
    :target: https://github.com/mne-tools/mne-nirs/actions?query=workflow%3A%22linux+%2F+pip%22
    
.. image:: https://github.com/mne-tools/mne-nirs/workflows/macos%20/%20conda/badge.svg
    :target: https://github.com/mne-tools/mne-nirs/actions?query=workflow%3A%22macos+%2F+conda%22
    
.. image:: https://github.com/mne-tools/mne-nirs/workflows/linux%20/%20conda/badge.svg
    :target: https://github.com/mne-tools/mne-nirs/actions?query=workflow%3A%22linux+%2F+conda%22
    
.. image:: https://codecov.io/gh/mne-tools/mne-nirs/branch/main/graph/badge.svg
    :target: https://codecov.io/gh/mne-tools/mne-nirs
    
.. image:: https://badge.fury.io/py/mne-nirs.svg
    :target: https://badge.fury.io/py/mne-nirs

**MNE-NIRS** is an `MNE-Python <https://mne.tools>`_ compatible near-infrared spectroscopy processing package.

MNE-Python provides support for fNIRS analysis, this package extends that functionality and adds GLM analysis, helper functions, additional algorithms, data quality metrics, plotting, and file format support.


Documentation
-------------

Documentation for this project is hosted `here <https://mne-tools.github.io/mne-nirs>`_.

You can find a list of  `examples within the documentation <https://mne.tools/mne-nirs/stable/auto_examples/index.html>`_.


Features
--------

.. features-start

MNE-NIRS and MNE-Python provide a wide variety of tools to use when processing fNIRS data including:

* Loading data from a `wide variety of devices <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_01_data_io.html>`_, including `SNIRF files <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_19_snirf.html>`_.
* `Apply 3D sensor locations <https://mne.tools/stable/overview/implementation.html#supported-formats-for-digitized-3d-locations>`_ from common digitisation systems such as Polhemus.
* Standard preprocessing including `optical density calculation and Beer-Lambert Law conversion <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_15_waveform.html#id2>`_, filtering, etc.
* Data quality metrics including `scalp coupling index <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_15_waveform.html#id3>`_ and `peak power <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_22_quality.html#peak-power>`_.
* GLM analysis with a wide variety of customisation including `including FIR <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_13_fir_glm.html>`_ or `canonical HRF <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_11_hrf_measured.html>`_ analysis, higher order `autoregressive noise models <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_10_hrf_simulation.html#using-autoregressive-models-in-the-glm-to-account-for-noise-structure>`_, `short channel regression, region of interest analysis <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_11_hrf_measured.html>`_, etc.
* Visualisation tools for all stages of processing from raw data to processed waveforms, GLM result visualisation, including both sensor and cortical surface projections.
* Data cleaning functions including popular short channel techniques and negative correlation enhancement.
* Group level analysis using `(robust) linear mixed effects models <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_12_group_glm.html>`_ and `waveform averaging <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_16_waveform_group.html>`_.
* And much more! Check out the documentation `examples <https://mne.tools/mne-nirs/stable/auto_examples/index.html>`__ and the API `for more details <https://mne.tools/mne-nirs/stable/api.html>`_.

.. features-end

Contributing
------------

Contributions are welcome (more than welcome!). Contributions can be feature requests, improved documentation, bug reports, code improvements, new code, etc. Anything will be appreciated. *Note*: this package adheres to the same contribution  `standards as MNE <https://mne.tools/stable/install/contributing.html>`_.


Acknowledgements
----------------

This package is built on top of many other great packages. If you use MNE-NIRS you should also acknowledge these packages.

MNE-Python: https://mne.tools/dev/overview/cite.html

Nilearn: http://nilearn.github.io/authors.html#citing

statsmodels: https://www.statsmodels.org/stable/index.html#citation

Until there is a journal article specifically on MNE-NIRS, please cite `this article <https://doi.org/10.1117/1.NPh.8.2.025008>`_.


Docker
------

To start a jupyter lab server with a specified MNE-NIRS version, and mount a local directory on a mac or nix computer use:

.. code-block:: console

   docker run -p 8888:8888 -v `pwd`:/home/mne_user ghcr.io/mne-tools/mne-nirs:v0.1.2 jupyter-lab --ip="*"

Or on windows:

.. code-block:: console

   docker run -p 8888:8888 -v %cd%:/home/mne_user ghcr.io/mne-tools/mne-nirs:v0.1.2 jupyter-lab --ip="*"

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mne-nirs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Robert Luke <robert.luke@mq.edu.au>",
    "keywords": "ECoG, EEG, MEG, brain, fNIRS, neuroimaging, neuroscience",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/4b/b7/69854488af691d65583951d7e3771e32d04fc7518f74739e8294a36f8a8c/mne_nirs-0.7.3.tar.gz",
    "platform": null,
    "description": "MNE-NIRS: Near-Infrared Spectroscopy Analysis\n=============================================\n\n.. image:: https://img.shields.io/badge/docs-master-brightgreen\n    :target: https://mne.tools/mne-nirs/\n    \n.. image:: https://github.com/mne-tools/mne-nirs/workflows/linux%20/%20pip/badge.svg\n    :target: https://github.com/mne-tools/mne-nirs/actions?query=workflow%3A%22linux+%2F+pip%22\n    \n.. image:: https://github.com/mne-tools/mne-nirs/workflows/macos%20/%20conda/badge.svg\n    :target: https://github.com/mne-tools/mne-nirs/actions?query=workflow%3A%22macos+%2F+conda%22\n    \n.. image:: https://github.com/mne-tools/mne-nirs/workflows/linux%20/%20conda/badge.svg\n    :target: https://github.com/mne-tools/mne-nirs/actions?query=workflow%3A%22linux+%2F+conda%22\n    \n.. image:: https://codecov.io/gh/mne-tools/mne-nirs/branch/main/graph/badge.svg\n    :target: https://codecov.io/gh/mne-tools/mne-nirs\n    \n.. image:: https://badge.fury.io/py/mne-nirs.svg\n    :target: https://badge.fury.io/py/mne-nirs\n\n**MNE-NIRS** is an `MNE-Python <https://mne.tools>`_ compatible near-infrared spectroscopy processing package.\n\nMNE-Python provides support for fNIRS analysis, this package extends that functionality and adds GLM analysis, helper functions, additional algorithms, data quality metrics, plotting, and file format support.\n\n\nDocumentation\n-------------\n\nDocumentation for this project is hosted `here <https://mne-tools.github.io/mne-nirs>`_.\n\nYou can find a list of  `examples within the documentation <https://mne.tools/mne-nirs/stable/auto_examples/index.html>`_.\n\n\nFeatures\n--------\n\n.. features-start\n\nMNE-NIRS and MNE-Python provide a wide variety of tools to use when processing fNIRS data including:\n\n* Loading data from a `wide variety of devices <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_01_data_io.html>`_, including `SNIRF files <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_19_snirf.html>`_.\n* `Apply 3D sensor locations <https://mne.tools/stable/overview/implementation.html#supported-formats-for-digitized-3d-locations>`_ from common digitisation systems such as Polhemus.\n* Standard preprocessing including `optical density calculation and Beer-Lambert Law conversion <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_15_waveform.html#id2>`_, filtering, etc.\n* Data quality metrics including `scalp coupling index <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_15_waveform.html#id3>`_ and `peak power <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_22_quality.html#peak-power>`_.\n* GLM analysis with a wide variety of customisation including `including FIR <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_13_fir_glm.html>`_ or `canonical HRF <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_11_hrf_measured.html>`_ analysis, higher order `autoregressive noise models <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_10_hrf_simulation.html#using-autoregressive-models-in-the-glm-to-account-for-noise-structure>`_, `short channel regression, region of interest analysis <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_11_hrf_measured.html>`_, etc.\n* Visualisation tools for all stages of processing from raw data to processed waveforms, GLM result visualisation, including both sensor and cortical surface projections.\n* Data cleaning functions including popular short channel techniques and negative correlation enhancement.\n* Group level analysis using `(robust) linear mixed effects models <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_12_group_glm.html>`_ and `waveform averaging <https://mne.tools/mne-nirs/stable/auto_examples/general/plot_16_waveform_group.html>`_.\n* And much more! Check out the documentation `examples <https://mne.tools/mne-nirs/stable/auto_examples/index.html>`__ and the API `for more details <https://mne.tools/mne-nirs/stable/api.html>`_.\n\n.. features-end\n\nContributing\n------------\n\nContributions are welcome (more than welcome!). Contributions can be feature requests, improved documentation, bug reports, code improvements, new code, etc. Anything will be appreciated. *Note*: this package adheres to the same contribution  `standards as MNE <https://mne.tools/stable/install/contributing.html>`_.\n\n\nAcknowledgements\n----------------\n\nThis package is built on top of many other great packages. If you use MNE-NIRS you should also acknowledge these packages.\n\nMNE-Python: https://mne.tools/dev/overview/cite.html\n\nNilearn: http://nilearn.github.io/authors.html#citing\n\nstatsmodels: https://www.statsmodels.org/stable/index.html#citation\n\nUntil there is a journal article specifically on MNE-NIRS, please cite `this article <https://doi.org/10.1117/1.NPh.8.2.025008>`_.\n\n\nDocker\n------\n\nTo start a jupyter lab server with a specified MNE-NIRS version, and mount a local directory on a mac or nix computer use:\n\n.. code-block:: console\n\n   docker run -p 8888:8888 -v `pwd`:/home/mne_user ghcr.io/mne-tools/mne-nirs:v0.1.2 jupyter-lab --ip=\"*\"\n\nOr on windows:\n\n.. code-block:: console\n\n   docker run -p 8888:8888 -v %cd%:/home/mne_user ghcr.io/mne-tools/mne-nirs:v0.1.2 jupyter-lab --ip=\"*\"\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "An MNE compatible package for processing near-infrared spectroscopy data",
    "version": "0.7.3",
    "project_urls": {
        "Download": "https://github.com/mne-tools/mne-nirs",
        "Homepage": "https://mne.tools/mne-nirs/",
        "Source Code": "https://github.com/mne-tools/mne-nirs/"
    },
    "split_keywords": [
        "ecog",
        " eeg",
        " meg",
        " brain",
        " fnirs",
        " neuroimaging",
        " neuroscience"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6666fbd28f919c437711df399eefd8bd6496fd6ba4f7996757bbab6238fda338",
                "md5": "2fba3aa0c9edde2a0cc717d89ca2f711",
                "sha256": "6655c958ba6160bd616bf985f308b39bd70af56b2e22d1a121227534da240aed"
            },
            "downloads": -1,
            "filename": "mne_nirs-0.7.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2fba3aa0c9edde2a0cc717d89ca2f711",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 133311,
            "upload_time": "2025-10-16T18:38:34",
            "upload_time_iso_8601": "2025-10-16T18:38:34.898666Z",
            "url": "https://files.pythonhosted.org/packages/66/66/fbd28f919c437711df399eefd8bd6496fd6ba4f7996757bbab6238fda338/mne_nirs-0.7.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4bb769854488af691d65583951d7e3771e32d04fc7518f74739e8294a36f8a8c",
                "md5": "3f09a3369988b73818274d3b0d9e0bcb",
                "sha256": "3a757d9669015616aeebab32fe2d01aa4e59dfb74deecb5f65899aeae911fc72"
            },
            "downloads": -1,
            "filename": "mne_nirs-0.7.3.tar.gz",
            "has_sig": false,
            "md5_digest": "3f09a3369988b73818274d3b0d9e0bcb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 99999,
            "upload_time": "2025-10-16T18:38:36",
            "upload_time_iso_8601": "2025-10-16T18:38:36.578288Z",
            "url": "https://files.pythonhosted.org/packages/4b/b7/69854488af691d65583951d7e3771e32d04fc7518f74739e8294a36f8a8c/mne_nirs-0.7.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-16 18:38:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mne-tools",
    "github_project": "mne-nirs",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "circle": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.15.4"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ],
                [
                    "!=",
                    "1.11.0.dev0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "pooch",
            "specs": [
                [
                    ">=",
                    "1.5"
                ]
            ]
        },
        {
            "name": "decorator",
            "specs": []
        },
        {
            "name": "h5io",
            "specs": []
        },
        {
            "name": "packaging",
            "specs": []
        },
        {
            "name": "pymatreader",
            "specs": []
        },
        {
            "name": "PyQt6",
            "specs": [
                [
                    "!=",
                    "6.6.1"
                ]
            ]
        },
        {
            "name": "PyQt6-Qt6",
            "specs": [
                [
                    "!=",
                    "6.6.3"
                ],
                [
                    "!=",
                    "6.6.2"
                ],
                [
                    "!=",
                    "6.6.1"
                ]
            ]
        },
        {
            "name": "pyobjc-framework-Cocoa",
            "specs": [
                [
                    ">=",
                    "5.2.0"
                ]
            ]
        },
        {
            "name": "sip",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "nibabel",
            "specs": []
        },
        {
            "name": "numba",
            "specs": []
        },
        {
            "name": "h5py",
            "specs": []
        },
        {
            "name": "jinja2",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "numexpr",
            "specs": []
        },
        {
            "name": "jupyter",
            "specs": []
        },
        {
            "name": "python-picard",
            "specs": []
        },
        {
            "name": "statsmodels",
            "specs": []
        },
        {
            "name": "joblib",
            "specs": []
        },
        {
            "name": "psutil",
            "specs": []
        },
        {
            "name": "dipy",
            "specs": []
        },
        {
            "name": "vtk",
            "specs": []
        },
        {
            "name": "nilearn",
            "specs": []
        },
        {
            "name": "xlrd",
            "specs": []
        },
        {
            "name": "imageio",
            "specs": [
                [
                    ">=",
                    "2.6.1"
                ]
            ]
        },
        {
            "name": "imageio-ffmpeg",
            "specs": [
                [
                    ">=",
                    "0.4.1"
                ]
            ]
        },
        {
            "name": "traitlets",
            "specs": []
        },
        {
            "name": "pyvista",
            "specs": [
                [
                    "!=",
                    "0.38.4"
                ],
                [
                    ">=",
                    "0.32"
                ],
                [
                    "!=",
                    "0.38.2"
                ],
                [
                    "!=",
                    "0.38.3"
                ],
                [
                    "!=",
                    "0.38.1"
                ],
                [
                    "!=",
                    "0.38.6"
                ],
                [
                    "!=",
                    "0.38.0"
                ],
                [
                    "!=",
                    "0.38.5"
                ],
                [
                    "!=",
                    "0.35.2"
                ]
            ]
        },
        {
            "name": "pyvistaqt",
            "specs": [
                [
                    ">=",
                    "0.4"
                ]
            ]
        },
        {
            "name": "mffpy",
            "specs": [
                [
                    ">=",
                    "0.5.7"
                ]
            ]
        },
        {
            "name": "ipywidgets",
            "specs": []
        },
        {
            "name": "ipyvtklink",
            "specs": []
        },
        {
            "name": "mne",
            "specs": []
        },
        {
            "name": "h5io",
            "specs": []
        },
        {
            "name": "lxml",
            "specs": []
        },
        {
            "name": "patsy",
            "specs": []
        },
        {
            "name": "tables",
            "specs": []
        },
        {
            "name": "typing_extensions",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        }
    ],
    "lcname": "mne-nirs"
}
        
Elapsed time: 1.76022s